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Abstract

Long-Wave Runup on a Sloping Beach,
Validation of a Lagrangian Numerical Model

by

Louis-Alexandre Couston

Master of Science in Engineering - Mechanical Engineering

University of California, Berkeley

Professor M. Reza Alam, Chair

We study the runup of two- and three-dimensional long-waves. The governing
equations are derived in the Lagrangian framework and allow the analysis of non-
breaking shallow-water waves propagating above an arbitrary seafloor. Nonlinear-
ity is included but the flow is assumed to be incompressible, irrotational in ver-
tical planes, and inviscid. Our analysis is purely numerical and based on explicit
finite-difference methods. Our scheme is validated against analytical solutions of
long-waves running up along a constant-slope seabed. Very good agreements are
shown between our simulations and published predictions for both two- and three-
dimensional cases. The model is highly flexible and computations of all presented
results were a matter of minutes on a standard computer. The simplicity of this
numerical implementation will allow us to investigate in the future many practical
applications such as tsunami mitigation.
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Introduction

1 Introduction

Harvesting marine energy, protecting offshore structures, coastal areas, seaports
and bridges rely on ocean engineers. The modeling of water waves is very chal-
lenging as many complex processes take place at the same time. Hopefully, the
propagation of water waves is quite different depending on parameters such as the
shallowness or the Ursell number [1] and approximations can be made.

Researchers have always extensively studied long-waves because of their high
destructive and energetic potential. A precise understanding of their dynamics
would undoubtedly benefit many practical applications. For instance, wave-energy
extractors need to be tuned for long-waves because they are the most predictable
waves in the ocean, and coastal communities constantly need better protections
against tsunamis, a specific kind of long-waves.

The long-wave assumption, also called shallow-water assumption, is well un-
derstood and greatly simplifies the general equations of motion of water-waves.
Incompressibility of the ocean is also usually assumed, but irrotationality and
linearity are simplifications that are not always appropriate. Therefore, it is of
utmost importance for a researcher in ocean engineering to precisely state all as-
sumptions and supporting claims.

The flow field can always be described in the Eulerian or Lagrangian frame-
work, but it remains exceptional to derive the wave equations in the latter. Indeed,
potential theory, developed in the Eulerian frame of reference, has been the most
extensively used technique to predict the dynamics of ships and the ocean. Thus,
in 1969, Wehausen was probably the first to introduce the Lagrangian coordinates
in the analysis of ship hydrodynamics [2]. Later, in 1976, Higgins-Longuet and
Cokelet [3] used a hybrid technique and took advantage of the Lagrangian con-
cepts and equations to simulate the breaking of deep-water waves. This unique
work has been emphasized by Yeung [4] in connection with other more popular
Eulerian methods that he reviewed. More specifically, the Eulerian framework is
not really adapted to study the runup of nonbreaking long-waves as the shoreline
may move over large distances. Nevertheless, the superiority of the Lagrangian
approach has not been proved and the runup phenomenon is still mainly studied
in the Eulerian frame of reference.

In this thesis, the Lagrangian framework is used to derive the equations gov-
erning the dynamics of long-waves. The mathematical formulation is based on
the incompressibility, irrotationality, inviscid and long-wave assumptions. The
computational method is tested against different Lagrangian and Eulerian analyt-
ical results. In particular, the linear analytical two-dimensional runup/drawdown
predicted by Shuto [5] and obtained numerically by Fujima [6] is observed for a
uniform sloping beach. The two-dimensional nonlinear effect is then validated
against the analytical solutions derived by Carrier et al. in 2003 [7]. Finally,
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Introduction

the linear three-dimensional formulation and its numerical implementation are
validated against the solution derived by Sammarco and Renzi [8], who have ana-
lytically investigated the propagation of long-waves generated by a partially sub-
merged landslide.

Despite the early developments of the linear Lagrangian theory by Shuto [5],
the Eulerian approach has notably dominated the field in the last 50 years. Carrier
and Greenspan’s hodograph transformation paved the way for this predominant
enthusiasm as they were able to derive an analytical solution for the fully nonlinear
runup of long-waves over a uniformly sloping beach [7]. However, the complexity
of the transformation made it impossible to generalize their results to any initial
waveform and only a few practical applications of their discovery have been re-
ported in the literature, as Carrier mentions it in a subsequent paper [9]. Carrier
et al. [7], Synolakis [10] and Tadepalli and Synolakis [11] among others insisted
on finding analytical solutions for the runup prediction of two-dimensional long-
waves. Their works are inspiring but suffer from restrictive assumptions. Conse-
quently, it is commonly acknowledged that numerical simulations are to take our
understanding of this phenomenon a step further. Numerical efforts have slowly
started. Shuto and Goto [12] were probably pioneers when they published their
numerical results in 1978, but many recent works in the Eulerian framework from
Lynett and Liu [13], Liu, Lynett and Synolakis [14] and Lynett and Liu [15] prove
that the focus is now on what numerical simulations can help us understand.

The objective of this paper is dual. First, we derive the nonlinear three-
dimensional equations of long-waves in a Lagrangian framework. Second, we
present a numerical scheme and its validation against published analytical results.
Beyond the scope of this thesis, we hope to have designed a numerical proce-
dure that will allow a versatile and time-efficient investigation of many practical
applications in the near future.
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Mathematical formulation

2 Mathematical formulation

We begin the mathematical analysis1 by considering the two well accepted con-
servation of mass and linear momentum laws. The resulting equations are valid
anywhere in the fluid but are very complicated. Consequently, we take advantage
of various assumptions and boundary conditions to derive the three-dimensional
and two-dimensional set of reduced equations for the free surface only, i.e. (32),
(33), (34), (35), and (36).

2.1 General three-dimensional governing equations

2.1.1 Initial and referent configurations

When we work in a Lagrangian frame of reference we have to choose a referent
configuration from which we will derive our governing equations. Two options are
available. One option is to choose the referent situation so that it matches the
initial value problem being tried, i.e. we consider the initial wave profile (e.g. a
Gaussian wave) and draw a Cartesian grid that defines where the fluid particles
are at the starting time of the simulation. This procedure makes it really easy
to obtain the Lagrangian equivalent of any Eulerian initial profile. However, the
derivation of the governing equations is somehow more mathematically involved
and thus makes the numerical implementation more demanding. For that matter,
we chose the referent situation to be the flat free surface. This method forces
us to spend some time transferring the Eulerian initial values to our Lagrangian
framework but benefits every other aspect.

2.1.2 Mass and momentum conservation laws

We define the flat free surface on top of a calm ocean as our referent configu-
ration. The Cartesian coordinates system (a, b, c) is used as a means to iden-
tify the referent position of all particles being followed over time. That is, if
P denotes the particles’ location such that P ref = (xref , yref , zref ) = (a, b, c);
P (t) = (x(a, b, c, t), y(a, b, c, t), z(a, b, c, t)) is the instantaneous location of all par-
ticles at any time.

Mass conservation in a Lagrangian framework. As can be seen in fig-
ure (1), the particle P moves with time, and its associated volume of fluid defined
in the referent configuration by a cube with volume Vref can be a priori trans-
formed in any parallelepiped of volume V(t). However, as we assume the fluid
to be incompressible, we have to force our element’s volume to remain constant

1This section follows to some extent the earlier works of Shuto [5] and Fujima [6].
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2.1 General three-dimensional governing equations

over time, ie. Vref = V(t) ∀t. Since the amount of stretching of a cube in all
three directions is given by the transformation matrix F , the continuity equation
is satisfied when

J(t) = det(F (t)) = det

 xa xb xc
ya yb yc
za zb zc

 =

∣∣∣∣∣∣
xa xb xc
ya yb yc
za zb zc

∣∣∣∣∣∣ = 1 (1)

where J(t) is the Jacobian of the transformation matrix F (t) such that (see fig-
ure (1)):

dP (t) = F (t).dP ref

0

a

b

c

Pref

P(t)

F
dPref

dP( )t

g

p( )Pref

p( )P( )t

Figure 1: Transformation of a referent fluid element.

Linear momentum conservation in a Lagrangian framework. Looking
again at figure (1), one can imagine that in an inviscid fluid dominated by the
pressure and gravity forces, the conservation of linear momentum simply reads

d

dt

∫
V(t)

ρUdV =

∫
V(t)

f
B

(P (t), t)dV +

∫
∂V(t)

σ(P (t), t).ndS (2)

where the integration is performed over the new fluid element’s volume V(t) or
associated surface and the stress tensor is linearly proportional to the pressure
distribution in the fluid, i.e. σ(P (t), t) = −p(P (t), t)I. We recall that we use the
notations P (t) and P ref = (a, b, c) for the instantaneous and referent locations of
all particles and:

P (t) = (x(P ref , t), y(P ref , t), z(P ref , t)), U =

 xt(P ref , t)
yt(P ref , t)
zt(P ref , t)
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2.2 Boundary conditions and assumptions

It has to be noted that U can be seen as the Lagrangian velocity of the ref-
erent fluid particle P ref at time t, or as the Eulerian velocity of the particle
that would be at point P (t) at time t. The integrals in equation (2) are sub-
stituted by new integrals as we switch from the instantaneous coordinates sys-
tem (x(a, b, c, t), y(a, b, c, t), z(a, b, c, t)) to the referent coordinates system (a, b, c).
Hence, (2) becomes

d

dt

∫
Vref

ρU(P ref , t)JdVref =

∫
Vref

[
ρg − F−1∇(a,b,c)p(P ref , t)

]
JdVref (3)

where J(t) = 1 is the Jacobian of the transformation matrix. The coordinate c
and variable z(a, b, c) are conveniently chosen positive in the opposite direction of
gravity, and (3) being valid for any referent volume we get: xtt(a, b, c, t)

ytt(a, b, c, t)
ztt(a, b, c, t) + g

 = −1

ρ

 xa xb xc
ya yb yc
za zb zc

−1 pa
pb
pc

 (4)

Finally, by taking advantage of (1) and rearranging (4), we obtain the dimensional
equations governing the motion of a three-dimensional fluid

xtt +
1

ρ

∂(p, y, z)

∂(a, b, c)
= 0 (5)

ytt +
1

ρ

∂(x, p, z)

∂(a, b, c)
= 0 (6)

ztt + g +
1

ρ

∂(x, y, p)

∂(a, b, c)
= 0 (7)

where (x, y, z, p) are functions of (a, b, c).

2.2 Boundary conditions and assumptions

In this section we first introduce what we can learn from the boundary condi-
tions. We then present all assumptions and the resulting simplifications in the
governing equations. The incompressibility and inviscid flow conditions have al-
ready been enforced, so only the irrotationality and long-waves assumptions are
actually introduced. Finally, we accomodate the equations to have them govern
the displacement variables’ evolution in lieu of the absolute position.
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2.2 Boundary conditions and assumptions

2.2.1 Boundary conditions

Free surface conditions. As we are interested in the free surface of the ocean,
we will write all governing equations in the particular case of c = 0. We assume
that if a particle is on the free surface it will stay on it its entire lifespan, i.e. if η
denotes the Eulerian free surface elevation, the kinematic boundary conditions is:

z(a, b, c = 0, t) = η(x, y, t),∀a, b, t (8)

The dynamic boundary condition simply states that the pressure on the free sur-
face is that of the ambient air

p(a, b, c = 0, t) = pair (9)

where pair denotes the atmospheric pressure and is casually assumed to be zero.
This condition also implies

∇(a,b)p(a, b, c = 0, t) = 0 (10)

where ∇(a,b) is the two-dimensional gradient operator in terms of the Lagrangian
horizontal coordinates in the referent configuration.

Seabed conditions. We suppose that if a particle is initially resting on the
ocean floor it will stay on it. In other words, its degree of freedom is reduced to
two and

z(a, b, c = −h(a, b, 0), t) = −h(x, y, t),∀a, b, t (11)

where h(x, y, t) is the water depth function such that its opposite describes the
seabed plane at any time. The reader should realize at this point that the free
surface elevation and the water depth are naturally given in terms of Eulerian co-
ordinates although the analysis is conducted in the Lagrangian frame of reference.

2.2.2 Irrotationality assumption

We assume that the fluid is irrotational in any vertical plane to further simplify
our equations. Let us consider one more time the volume of fluid associated with
an arbitrary particle. The element is not rotating if and only if its diagonals’
directions are unchanged over time. This idea is illustrated in the following figure
for a x− z plane and requires

α = γ ⇔ za
xa

=
xc
zc
⇔ xaxc = zazc (12)
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2.2 Boundary conditions and assumptions

γ

α

a, x

c, z

Figure 2: Illustration of the irrotationality condition.

Similarly for a y − z plane, we have

zb
yb

=
yc
zc
⇔ ybyc = zbzc (13)

This simplification has already been used by Fujima [6] and, as he pointed out, is
justified by the fact that we consider the fluid to be inviscid.

2.2.3 Scaling and long-wave assumption

The horizontal and vertical scales of long-waves are vastly different. That’s why
the non-dimensionalization of our physical quantities relies on two different lengths.
The horizontal variables and coordinates are scaled by the length L:

a← ãL b← b̃L x← x̃L y ← ỹL

The vertical quantities are scaled by H:

c← c̃H z ← z̃H η ← η̃H h← h̃H

And the time and pressure variables become:

t← t̃
L√
gH

p← p̃ρgH

where the wide tilde symbol denotes dimensionless variables. In general, L and H
are estimates of the wavelength and mean water depth such that H

L
= µ� 1 is the

shallowness parameter. However, if the nonlinearity parameter ε = A
H

is of order
unity with A and H the wave height and mean water depth, the approximate
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2.3 Final three-dimensional governing equations

wave height can also be picked as the vertical normalizing length2. It should also
be noticed that if H is the mean water depth, the time variable is scaled by the
linear long-wave phase velocity and the wavelength.

2.3 Final three-dimensional governing equations

In this section, we derive the dimensionless equations that govern the three-
dimensional free surface evolution of long-waves for an incompressible and irro-
tational flow. The final form is written in terms of the displacements’ variables
instead of the absolute locations.

2.3.1 Governing equations for the free surface

Simplifications following the long-wave assumption. The proposed scaling
enables us to transform equations (1) (5) (6) and (7) into

∂(x, y, z)

∂(a, b, c)
= 1 (14)

xtt +
∂(p, y, z)

∂(a, b, c)
= 0 (15)

ytt +
∂(x, p, z)

∂(a, b, c)
= 0 (16)

µ2ztt + 1 +
∂(x, y, p)

∂(a, b, c)
= 0 (17)

where the variables p, x, y, z and coordinates a, b, c are dimensionless and we will
omit the wide tilde symbol from now on. The long-wave assumption H

L
= µ � 1

allows us to reduce (17) to:

1 +
∂(x, y, p)

∂(a, b, c)
= 0 (18)

Similarly, the irrotationality conditions in their dimensionless forms can be rewrit-
ten as:

xaxc = µ2zazc � 1 (19)

ybyc = µ2zbzc � 1 (20)

2Note that if ε � 1 the wave height can still be chosen to scale the vertical variables and
coordinates, although the dimensionless water depth won’t be of order unity anymore.

8



2.3 Final three-dimensional governing equations

To the leading order in µ these two equations have a right-hand-side equal to zero.
Since it would not be physical to have xa = 0 nor yb = 0, we necessarily have:

xc = yc = 0 (21)

Consequently, the distribution of the horizontal velocity is uniform vertically, and
any infinitely thin vertical cuboid of fluid remains a cuboid over time.

Simplifications following the irrotationality assumption. As a consequence
of (21), the continuity equation (14) takes the following form∣∣∣∣∣∣

xa xb xc
ya yb yc
za zb zc

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xa xb 0
ya yb 0
za zb zc

∣∣∣∣∣∣ = zc

∣∣∣∣ xa xb
ya yb

∣∣∣∣ = zcs = 1 (22)

where it has to be noticed that the determinant s of the x − y transformation
matrix is a function of a, b, t only. Similarly, the momentum equation in the z-
direction (18) becomes:

pc = −1

s
(23)

This last equation shows that the pressure gradient in the vertical direction is
purely hydrostatic.

Application of the boundary conditions. Here we derive the x−y governing
equations for the free surface by taking advantage of the boundary conditions. In
fact, using the dynamic free surface boundary condition (10) and the simplified
momentum equation in the z-direction (23), equations (15) and (16) become

xtt =
1

s

∣∣∣∣ ya yb
za zb

∣∣∣∣ (24)

ytt = −1

s

∣∣∣∣ xa xb
za zb

∣∣∣∣ (25)

where we recall that s is the determinant of the x − y transformation matrix.
Finally, the vertical integration of the continuity equation (22) gives the dimen-
sionless free surface elevation, i.e.

z(a, b, 0, t)− z(a, b,−h(a, b, t)) =

∫ 0

−h(a,b,0)
zcdc =

h(a, b, 0)

s

or,

z(a, b, 0, t) =
h(a, b, 0)

s
− h(x, y, t) (26)

9



2.3 Final three-dimensional governing equations

as we used the seabed kinematic boundary conditions (11). We note that these
equations only govern the evolution of the free surface and are independent of c.
In addition, in (24) and (25) z can be easily substituted by x, y through (34).
Thus, we started from three coupled equations for x, y, z valid ∀a, b, c and derived
a reduced system of two equations on x, y as functions of a, b only. This surprising
simplification results from (21).

2.3.2 Displacement variables and linearization

The instantaneous location P (t) = (x, y, z) of any particle can always be decom-
posed in terms of its referent location P ref = (a, b, c) and its displacement variables
(X, Y, Z) such that:

x(a, b, c, t) = a+X(a, b, c, t)
y(a, b, c, t) = b+ Y (a, b, c, t)
z(a, b, c, t) = c+ Z(a, b, c, t)

(27)

It is really convenient to work with the displacement variables because the asso-
ciated governing equations can be easily linearized. The first two dimensionless
equations for X, Y, Z come from the linear-momentum conservation law, i.e. are
derived from (24) (25) and (27):

Xtt = −1

s

(
Za −

∣∣∣∣ Ya Yb
Za Zb

∣∣∣∣) (28)

Ytt = −1

s

(
Zb +

∣∣∣∣ Xa Xb

Za Zb

∣∣∣∣) (29)

And the third dimensionless equation for X, Y, Z expresses mass conservation, i.e.
is derived from (26) and (27)

Z(a, b, 0, t) =
h(a, b, t0)

s
− h(X + a, Y + b, t) (30)

where

s = 1 +Xa + Yb +

∣∣∣∣ Xa Xb

Ya Yb

∣∣∣∣ = 1 +Xa + Yb + S (31)

These are the nonlinear shallow-water waves equations, which govern the free
surface evolution of an incompressible, inviscid and irrotational fluid in terms of
the displacement variables. They are valid for c = 0, and we recall that X, Y, Z are
functions of a, b, t and represent the two horizontal and one vertical displacements
of any particle that was on the free surface in the referent configuration. The linear
form of the last three equations assuming that X, Y, Z and all their derivatives are
really small compared to one is:

Xtt = −Za (32)

10



2.4 Two-dimensional governing equations

Ytt = −Zb (33)

Z(a, b, 0, t) = h(a, b, t0)(1−Xa − Yb)− h(X + a, Y + b, t) (34)

2.4 Two-dimensional governing equations

The reduced one horizontal dimension governing equations can help understand
a few concepts that would be too hard to solve analytically or numerically for
two horizontal dimensions. Moreover, very few three-dimensional studies have
been published as noted just a few years ago by Lynett and Liu [15] and Sam-
marco and Renzi [8]. Hence we first require our code to be validated against
two-dimensional results. In that respect, the two-dimensional form of the dimen-
sionless equations (28) (29) and (30) is derived and further simplified for two
simple bathymetries.

We start from (28) and (30) and drop all b, y related terms, i.e.

Xtt = − Za
1 +Xa

(35)

Z(a, 0, t) =
h(a, t0)

1 +Xa

− h(X + a, t) (36)

If the dimensionless water depth is constant and equal to h, the free surface is
governed by a set of two equations that is:

Xtt = h
Xaa

(1 +Xa)3

Z = −h Xa

1 +Xa

(37)

The linear form of which is:
Xtt = hXaa

Z = −hXa (38)

This last set of equations dictates the propagation of shallow-water waves over
a constant seabed. Note that we used the continuity equation to substitute Z
in terms of X such that only one partial differential equation on X has to be
solved to get the free surface displacement. A particular solution based on sine
and cosine functions can be derived. Interesting insights can be found in Fujima’s
work [6] and Shuto’s paper [5]. Fundamentally, a Lagrangian linear solution al-
ready includes what we would see as Eulerian nonlinearity as both the vertical

11



2.4 Two-dimensional governing equations

and horizontal displacement are adjusted in time.

If the slope of the dimensionless water depth is constant and equal to β, the
new set of equations that governs the two-dimensional free surface evolution is:

Xtt = − β

(1 +Xa)

[
1

1 +Xa

− aXaa

(1 +Xa)2
− (1 +Xa)

]

Z =
βa

1 +Xa

− β(a+X) (39)

The linear form of which is:

Xtt = β (aXaa + 2Xa)

Z = −β(aXa +X) (40)

If α is the slope of the dimensional water depth function, H = Lα is a vertical
scaling that makes β = 1, and the evolution of the dimensionless variables follow-
ing (39) (40) is independent of β. Note that this scaling is legitimate if and only
if the slope is really mild such that µ = H

L
= α � 1 is true. Analytical solutions

also exist in this case. The full derivation can be found in Shuto [5], but we will
only consider the solution that is most physical or which does not blow up as its
arguments tend to zero. A thorough discussion on this topic follows in the next
section as our numerical scheme is tested against this linear solution.
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Numerical model for two-dimensional waves and validations

3 Numerical model for two-dimensional waves

and validations

By the end of this part we hope to give the reader all the necessary tools to
numerically solve the partial differential equations derived in the previous section.
Different numerical schemes are available and have been used to simulate the wave
equation in a Lagrangian frame of reference. For instance, Zelt [16] used a finite-
element method to investigate the runup of nonbreaking and breaking solitary
waves whereas Shuto and Goto [12] used a finite-difference technique. We decided
to implement the latter method because of its simplicity.

We use a fixed collocated grid which corresponds to a totally calm sea state,
i.e. the horizontal and vertical displacements are zero in the referent situation. We
use the explicit 4th order scheme of Runge-Kutta for time integration and a basic
central finite difference technique of 2nd order to get the spatial derivatives. The
method is developed for the nonlinear equations and we assume that the reader
could easily implement the linear equivalent. The discretization is performed
on the dimensionless equations, i.e. (35) and (36) governing the runup of two-
dimensional waves on a uniformly sloping beach.

We point out the fact that all existing analytical results suffer from really
strong restrictions. For instance, Carrier and Greenspan’s Eulerian derivation [7]
and Shuto Lagrangian developments [5] assume a constant-slope seabed. Shuto’s
analytical solution lacks the nonlinear effect taken into account by Carrier et al.,
but the latter proposed a transformation so complex that the theoretical runup
was obtained only for four very specific initial value problems. Fundamentally, all
existing analytical solutions are worth comparing to, but future insights on the
propagation and runup/rundown of long-waves on and along the coasts will be
claimed by numerical experiments.

Our mathematical formulation and numerical model both include nonlinearity
and suffer no restriction on the water-depth function. However, we take advantage
of the latter versatility exclusively in our three-dimensional simulations as we
investigate the propagation of tsunamis generated by a landslide.

3.1 Nearshore unboundedness

It has been observed in early simulations that rapidly-growing oscillations are
likely to occur nearshore. No refined spatial grids nor smaller time steps could
make it any better. It seems that the simulation is subject to growing non-physical
solutions even though the scheme satisfies an equivalent Courant-Friedrichs-Lewy
condition (CFL). In the worst case scenario the numerical solution blows up though
we did not expected it to. This may partly explain the nonexistence of a predom-
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3.2 Numerical procedure

inant code on the subject of long-waves runup in a Lagrangian framework.
As proved by Shuto [5], diverging functions for zero arguments, i.e. nearshore,
satisfy the two-dimensional governing equations in the case of a constant-slope
seabed. In its derivation, Nobuo Shuto assumed that the separation of space and
time variables was acceptable, and found that the spatial dependency of the verti-
cal displacement could be either a zero order Weber or Bessel function. The Weber
functions are also called Bessel function of second kind and have the property to
diverge for zero arguments.
Thus, we expect the full solution of the general two- and three-dimensional govern-
ing equations to have a diverging term similar to the Weber functions. The initial
value problems at hands do not include such unbounded functions, but the nu-
merical integration of the solution at each time step is likely to produce nearshore
errors as the horizontal acceleration is inversely proportional to 1−ε, where ε is the
nonlinearity parameter (see Zelt and Raichlen [17]). Therefore, a technique could
be to use at each time step the Hankel transform with a finite number of modes to
decompose the numerical solution as a series of weighted Bessel functions of the
first kind. The possible small discontinuity of the nearshore free surface elevation
would be neglected in this decomposition given the fact that only a few number of
modes are selected. Next, the inverse Hankel transform could be applied to get a
well-behaved approximation of the initial free surface solution. The downsides of
this approach are the computational cost of the Hankel and inverse Hankel trans-
forms and the complexity of the finite series approximation. Hence we developed
a second method, which is to dispose of the onshore node. This technique requires
no additional maths nor operations yet yield successful results. Specifically, the
computational domain is a set of referent free surface particles, which supposedly
starts with the particle on the shore (i.e. at the wet/dry interface) and ends at
the offshore boundary. However, since the unboundedness of the solution is likely
to start nearshore, we do not update/work with the shore particle. The distance
between the first node of our grid and the onshore particle will be referred to as
the staggering parameter in subsequent sections and is typically of the order of
the spatial resolution.

3.2 Numerical procedure

As said in the introduction, two-dimensional simulations were primarily run to
validate the mathematical formulation and the numerical scheme against well ac-
cepted results. The extensive numerical experiments that were conducted also
helped us formulate the technique to bypass the existence of diverging modes as
solutions of the governing equations. The numerical formulation is based on an ex-
plicit Runge-Kutta and central finite-difference technique to respectively integrate
in time the solutions and get their associated spatial derivatives. In this section,
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3.2 Numerical procedure

we will first exhibit the basic structures of our two-dimensional code. Then, the
two-dimensional experiments run for validation will be presented.

3.2.1 Basic structure of the algorithm

The code initially calls an external function that returns the initial values of the
horizontal and vertical displacements and velocities over all nodes defining the
spatial grid. Depending on the spatial steps another external function gives a
discrete time vector satisfying an equivalent CFL condition. The code is then free
to run as long as necessary and calls different nested and external functions to get
the spatial derivatives and integrate in time the solution.

3.2.2 Grids construction

The simulation of two-dimensional surface waves is actually based on the time
update of a single dimension curve whose evolution is both horizontal and vertical,
hence two-dimensional. Because the referent configuration is the calm free surface,
the instantaneous locations of all particles that constitute the air-ocean interface
is a function of the referent horizontal location and time only. Therefore, we use
the set of coordinates aj, j ∈ N∗ as the horizontal locations of our la particles in
the referent configuration, and the vertical position cj = 0 is simply omitted. We
assume that the runup motion over the dry land always occurs on the left-hand-
side of the domain. The particles in the referent configuration can be uniformly, or
non uniformly distributed. If the auj (resp. anuj ) with j ∈ [1, la] are the uniformly
(resp. non uniformly) spaced particles, we note Fm,δ the quadratic function such
that

anuj = Fm,δ(a
u
j ) =

1−m
ala − δ

(auj − δ)2 +m(auj − δ) + δ (41)

where, m ∈ [0; 1] is the uniformity parameter, ie. m = 0 means that we have
a highly non-uniform grid and m = 1 means that the grid is strictly uniform.
In (41), δ is our previously defined staggering parameter and allows us to have
the first grid particle slightly away from the shore (figure (3)). All displacements
variables are updated over time on the grid points and the exact shore runup can
be obtained using a polynomial interpolation of X(0, t) at any time.
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1

3

β

2
One-Dimensional Grid

Uniform Slope

Figure 3: This is the geometry of our two-dimensional problems. The sloping beach is
always assumed to be on the left-hand-side of the domain whereas the right-hand-side
is an open boundary. β is the dimensionless slope. (1) The particle on the shoreline
is removed from the computational grid. (2) The X,Z displacements of the first node
(i.e. δ away from the shore in the referent configuration) are tracked over time. (3) A
polynomial interpolation is required to get a more accurate runup.

Once the spatial grid is defined, the uniform time span can be obtained using an
equivalent Courant-Friedrichs-Lewy condition to find the largest time step that
theoretically allows numerical stability. We do the stability analysis for equa-
tions (40) and find

∆t� min{ ∆a√
βa
,

√
∆a√
β
} (42)

where ∆a and β are the minimum spatial step and mean seabed slope respectively.

3.2.3 Initial and boundary value problem

The physical phenomena we plan to address are referred to as initial, boundary
or mixed value problems. If the initial water surface is not calm, i.e. the initial
vertical displacements are non zero, the starting vertical and horizontal displace-
ments have to be carefully taken care of. As said in preceding sections, we decided
to derive the governing equations for a referent still water configuration. Conse-
quently, a non zero initial profile should be considered as the result of a virtual
horizontal and vertical transformation of the initially at rest free surface. From a
practical standpoint, if η(x) describes the initial free surface, we can get X(a, 0)
from the continuity equation as

η(x, 0) = η(a+X(a, 0), 0) = Z(a, 0) =
h(a, 0)

1 +Xa(a, 0)
− h(a+X(a, 0), 0) (43)

The equation for X(a, 0) is a nonlinear 1st order ODE which can be solved using
a finite-difference scheme. The boundary condition X(0, 0) = 0 is a convenient
boundary condition if appropriate.
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3.2 Numerical procedure

Although no boundary value problem is presented in this work, it is worth high-
lighting a few points. As already mentioned, the left-hand-side of the domain is
assumed to be the dry land region, and we have a free boundary condition for the
horizontal displacement. The vertical motion is obtained as we expect that the
particle in contact with the shore should always stay on the shore. However, since
we do not update this particle, the vertical position of our first node is actually
found through the continuity equation. A numerical experiment is said to be a
boundary value problem if the farthest offshore point’s motion is forced. In such
cases, the numerical update should incorporate this forcing. If no forcing is pre-
scribed, the right-hand-side should be an open boundary. However, no technique
can be easily implemented and quite often reflections come from the right. Thus,
the domain should be big enough so that these reflections do not perturb what is
being observed at the shoreline.

3.2.4 Horizontal and vertical displacement update

Let’s now consider that X and Xt are known at time t. The time integration of the
governing equation is based on the finite difference method developed by Runge
Kutta with accuracy O(∆t4) if ∆t is the time step. In order to get Xtt(aj, t), j ∈
N∗, hence Xt(aj, t + ∆t) and X(aj, t + 2∆t), we need to numerically assess the
value of Xa,j and Xaa,j. If D represents a discrete 1st order differential operator,
and D2 is its 2nd order equivalent, we have

Xtt,j =
−1

1 +Xa,j

[
ha(aj, t)

1 +Xa,j

− h(aj, t)Xaa,j

(1 +Xa,j)2
− hx(xj, t)(1 +Xa,j)

]
(44)

Where Xa,j = [DX]j, Xaa,j = [D2X]j, ha(aj, t) = [Dh]j and hx(xj, t) needs a
little bit more work since it is not evaluated on one of the referent nodes. It
should be noted that this equation on X only is derived from the coupled X − Z
equations (35) and (36). The latter set of equations would be slightly easier to
implement but would lack the information that a single equation on X, in lieu of
two, is necessary to integrate to predict the runup at all times.

The update for the interior points using D (resp. D2) is straightforward. For
instance, if we use a two stencil points technique (resp. three stencil points) over
a uniform grid, the two linear operators are given by

[D]i,j =
1

2∆a
(δi+1,j − δi−1,j) (45)

[D2]i,j =
1

∆a2
(δi+1,j − 2δi,j + δi−1,j) (46)
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3.3 Validation of the two-dimensional linear model

where ∆a is the distance between each grid point. We cannot use a central finite-
difference technique on the boundaries of our domain . Therefore, on the left-
hand-side (resp. right-hand-side) we use a forward finite-difference (resp. back-
ward finite-difference). This nearshore boundary condition is not exact and many
other ideas (e.g. using ghost nodes) have been tried. Yet, none makes more phys-
ical sense than the others. Finally, the backward finite-difference doesn’t allow
outgoing waves. A careful implementation of the Sommerfeld radiation condition
would probably work better but still need to be implemented. Another option
would be to use a sponge layer technique, i.e. to add a progressive damping term
in the governing equations of the say 10% farthest points from the shore.

3.3 Validation of the two-dimensional linear model

Our numerical model is first compared with the analytical solution obtained in a
Lagrangian framework for the linear runup/rundown of water waves over a straight
beach with slope α. The theory and all derivations can be found in Shuto’s
work [5]. The non-dimensionalization of our equations is performed using L = 1m
for all horizontal variables and H = Lα for the vertical direction, thus making
the dimensionless slope β = 1. Both linear and nonlinear numerical results are
compared to the analytical solution. The effect of the staggering and uniformity
parameters are discussed.

3.3.1 Lagrangian linear analytical solution

We only retain the non-diverging terms from the dimensional general solution
found by Shuto [5], that is the one associated with the Bessel functions of the first
kind and first order for the horizontal displacement. The solution obtained is a
standing wave running up and down a uniform sloping beach.

Z(a, t) = −HJ0
(

2σ

√
a

αg

)
cos(σt) (47)

X(a, t) =
H
σ

√
g

αa
J1

(
2σ

√
a

αg

)
cos(σt) (48)

The dimensionless form of which is

Z(a, t) = −H̃J0
(
2σ̃
√
a
)
cos(σ̃t) (49)

X(a, t) =
H̃
σ̃

√
aJ1

(
2σ̃
√
a
)
cos(σ̃t) (50)

where σ̃ and H̃ are the dimensionless equivalent of σ and H appropriately scaled
by H and

√
gα
L

. Note that the dimensionless variables X,Z are independent of
the slope α.
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3.3 Validation of the two-dimensional linear model

3.3.2 Numerical simulations

In order to check whether our code is well behaved, we start off with an initial
profile given by (49) and (50) at time t = 0. Note that this initial value problem
is easy to implement because the variables are expressed in terms of the referent
coordinates. The following figures show comparisons at different time of the di-
mensionless linear and nonlinear numerical simulations with the linear analytical
solution (49) (50). The parameters are those of Koji Fujima [6] who did this
comparison a few years earlier (i.e. α = 1

20
, H = 20 m, T = 300 s such that

H̃ = 1 and σ̃ = 2π
T

√
1
gα

= 0.0299). The simulations were run up to 500 sec-

onds. The numerical integration converges to a fixed solution as the number of
spatial nodes and time steps are increased. The numerical horizontal acceleration
Xtt(a = a(la), t) is analytically updated, i.e. using (48), to avoid discrepancies due
to the offshore-boundary backward finite-difference approximation.
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Figure 4: Spatial and time convergence of the linear and nonlinear schemes at time 400
seconds. The initial profile is given by the theory. Graphs on the left show the spatial
convergence for a time/space grid size ratio of 125/20. Those on the right exhibit the
time convergence for la = 100. The upper plots refer to the linear case, whereas the
lower ones were obtained for nonlinear simulations. la is the grid size, lt the number of
time steps.

3.3.3 Results and discussions

The separation of variables that allowed the derivation of the analytical solution
is validated as the linear simulation closely follows the theoretical model. As
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3.4 Validation of the two-dimensional nonlinear model

observed by Koji Fujima, the maximum runup/rundown can be quite satisfactorily
approximated by the linear theory. The nonlinear effect has indeed little effect on
the extreme values. However, the evolution is quite different between the linear
and nonlinear simulations. The shoreward (resp. seaward) velocity increases much
faster after reaching the maximum drawdown (resp. highest runup) point as we
take into account the nonlinear effect. This change should be accounted for as for
a nonuniform slope the extreme runup/rundown values might differ considerably.
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Figure 5: Snapshots at four different times of the linear and nonlinear numerical sim-
ulations along with the analytical solution that comes from the linear theory of long
water-waves running up and down a constant slope seabed. The simulations were ob-
tained for 100 spatial nodes and a total of 991 time steps were run to simulate a 500
seconds motion. The solid blue, dashed red, and dotted green with small markers lines
represent the analytical, linear, and nonlinear simulated solutions.

3.4 Validation of the two-dimensional nonlinear model

3.4.1 Eulerian nonlinear analytical solutions

We turn to Kanoglu’s work [18] and Carrier et al. [9] for the validation of the
nonlinear case. They used a hodograph transformation, today known as Carrier-
Greenspan, of the governing equations in the Eulerian frame of reference in or-
der to find analytical solutions for the runup of long-waves. They theoretically
obtained both maximum seaward and shoreward velocities and the maximum
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3.4 Validation of the two-dimensional nonlinear model

runup/rundown for four different initial waveforms. We compare their results
with ours in a table later in this paragraph.

3.4.2 Initial profiles

As said earlier,the referent situation being the flat surface, any non zero initial
vertical profile requires us to find the associated initial horizontal displacement
through the continuity equation (43). The 4 dimensionless profiles studied by
Carrier et al., and later by Kanoglu are combinations of exponentials and are
given in the Eulerian frame of reference, i.e. we first have two Gaussian profiles

ηG(x, 0) = H1exp(−c1(x− x1)2) (51)

such that ηG+(x, 0) = ηG(x, 0) is a positive Gaussian wave and ηG−(x, 0) =
−ηG+(x, 0) its opposite counterpart . And then, we have two different leading
depression N -waves (LDN ) profiles which take a form similar to:

ηN(x, 0) = H1exp(−c1(x− x1)2)−H2exp(−c2(x− x2)2) (52)
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Figure 6: Carrier’s four initial waveforms. Figure (a) represents the positive Gaussian
with H1 = 0.017, c1 = 4.0, x1 = 1.69, (b) its negative counterpart with H1 = 0.017, c1 =
4.0, x1 = 1.69, (c) is the first leading depression N -waves form, i.e. H1 = 0.02, c1 =
3.5, x1 = 1.5625, H2 = 0.01, c2 = 3.5, x2 = 1.0 and (d) the second leading depression
N -waves form with H1 = 0.006, c1 = 0.4444, x1 = 4.1209, H2 = 0.018, c2 = 4.0, x2 =
1.6384.
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3.4 Validation of the two-dimensional nonlinear model

These wave forms are given in an Eulerian framework and their Lagrangian equiv-
alent have to be found. To sum up the procedure, we first solve the continuity
equation (43) for X(a) at time t = 0, and then get Z(a, 0) through Z(a, 0) =
η(x, 0) = η(a+X(a, 0), 0). As we integrate (43), a boundary condition has to be
enforced somewhere. No better choice than setting X = 0 for the closest node to
the shore was apparent and small discrepancies at the earliest times of the simu-
lation could be observed as this boundary condition is not exact. Once again, the
non-dimensionalization is performed using L = 1m for all horizontal variables and
H = Lα for the vertical direction. As mentioned earlier, time is normalized by√
gH
L

such that the equations of motion are independent of the slope (i.e. β = 1).

3.4.3 Results and discussion

Positive Negative LD N -Waves LD N -Waves
Gaussian Gaussian form 1 form 2

Parameters H = 0.0170 H = 0.0170 H1 = 0.02 H1 = 0.006
H2 = 0.01 H2 = 0.018

Maximum 0.0467 0.0263 0.0575 0.0322
runup (0.0470) (0.0268) (0.0583) (0.0328)
Maximum -0.0276 -0.0474 -0.0240 -0.0484
rundown (-0.0268) (-0.0470) (-0.0235) (-0.0484)
Maximum shore- -0.0933 -0.201 -0.0152 0.106
ward velocity (-0.103) (-0.213) (-0.0153) (0.0373)
Occurring -0.0258 0.0365 -0.0153 0.0373
location (-0.0259) (0.0333) (-0.0167) (0.0371)
Maximum sea- 0.219 0.106 0.232 -0.215
ward velocity (0.213) (0.103) (0.226) (-0.225)
Occurring 0.0142 0.0367 0.00872 0.0376
location (0.0122) (0.0365) (0.00666) (0.0351)

Table 1: Comparison between the two-dimensional analytical results derived by Carrier
et al. [9] and our nonlinear simulations for the runup/rundown of long-waves over a
constant-slope seabed. The values found by Carrier et al. are given in between paran-
thesis.

All the predictions presented in this table are converged results up to a point
where the code blows up as we try to refine too much the spatial grid. Indeed, if
the referent particles are already very close, they may get too close as they move
horizontally in time for the finite-difference techniques to work. We believe that a
criterion could be obtained regarding the stability of the code. Given the length
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3.4 Validation of the two-dimensional nonlinear model

of the physical domain, it would be based on the staggering parameter, the non-
uniformity of the grid which makes it finer nearshore and the number of nodes.
Fundamentally, the closer to the shore the first node is, the more likely to explode
the code is. However, the stability may not be reducible to such a criterion and
a lot more work is expected. Finally, the prediction of the extreme values is well
acceptable when compared to Carrier et al.’s results. The small differences that
can be observed are principally due to the highly unstable behavior of the code
for large number of nodes nearshore3.
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Figure 7: The evolution of a positive Gaussian wave over a constant-slope beach is
observed. (a) shows that at t = 0 the wave starts to collapse and propagate to the right
and to the left (t = 1), the first wave runup is then observed (t = 2), followed by a
rundown (t = 3) and a second runup at t = 4. The thick black line on the left of the
domain represents the sloping beach. (b) is a nearshore zoom of (a).

Conservation of mass and energy. The discretization in time and space of
the governing equations is likely to make our simulations physically unrealistic
regarding the conservation of mass and energy. Consequently, it is important to
check that no mass nor energy is added or taken out of the fluid domain. To verify
this we duplicate the experiments conducted for the second leading depression N -
wave form presented above and close the domain. In other words, at a = 10 we

3These observations question the smoothness of the analytical solution derived by Carrier
et al.; and a thorough investigation may be required to fully understand the regularity of the
solutions as the domain over which the partial differential equations are solved is extended
nearshore.
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3.4 Validation of the two-dimensional nonlinear model

impose a wall boundary condition (i.e. Xt = Xtt = 0). We expect the mass or
volume and the energy to be conserved since the flow is considered incompressible
and inviscid. The simulations showed that the change of fluid volume relatively to
the initially displaced volume is really small (∼ 10−10%) even for very few points
(la = 101, see figure (8.a)). This allows us to conclude that mass is really well
conserved in our simulations. To verify the conservation of energy we compare
the potential and kinetic wave energy at all time (i.e. we subtract the potential
energy of the referent calm fluid domain) with the potential wave energy of the
initial deformation. We observed large relative differences (∼ 100%) for very few
points (i.e. la = 101, see figure (8.b)); but these variations continuously decrease
as the number of nodes increases such that no more than ∼ 1% of the initial wave
energy fluctuates in an out of the fluid domain when we take 801 spatial points
or more (figure (8.c)). Specifically, the energy is really well conserved up to the
point when the wave reaches the shore and a large runup or drawdown occurs.
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Figure 8: (a) shows the relative variations of volume or mass to the initial displaced
volume or mass. The pattern is much like a noise signal. (b) and (c) show the relative
differences of wave energy over time to the initial wave energy. For very few points, that
is la = 101, the difference gets above ∼ 50% when the runup and rundown phenomena
occur. However, these variations decrease uniformly as the number of nodes increases.
The setup and initial value problem is the one corresponding to the second leading
depression wave experiment (presented above).
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4 Validation of the three-dimensional linear model

Here we address the effect of including a second horizontal dimension in our simu-
lations. The numerical procedure is not presented as it rigorously follows the logic
embedded in the two-dimensional model.

The three-dimensional validation is a crucial step, yet hard to fulfill. Very few
analyses of three-dimensional long-waves have been published as mentioned by
Sammarco and Renzi [8]. Lynett et al. started with a two-dimensional analysis of
landslides’ generated waves in 2002 [13] and 2003 [14] before taking into account
the third dimension in 2005 [15]. They found that the highest runup and lowest
rundown along the shoreline cannot be observed with a two-dimensional model.
Most of their observations can be found in our own simulations. However, their
formulation is less restrictive than ours regarding the long-waves assumption and
will need subsequent validations before serving as a benchmark test. Therefore,
we chose to validate our linear numerical model against the results presented by
Sammarco and Renzi in 2008 [8]. They derived a linear analytical solution in the
Eulerian framework for the propagation and runup of long-waves generated by a
landslide. Their assumptions and ours are similar, thus allow meaningful compar-
isons.

We first describe the seabed motion that mimics the moving landslide. Sec-
ondly, the initial value problem is carefully addressed. Finally, our linear three-
dimensional formulation is validated against their closed form solution and we
discuss and compare the snapshots they presented with ours.

4.1 Seabed perturbation and normalization

The numerical experiment is an initial value problem together with a moving
seabed. At time t = 0, the calm water surface is forced to move as a landslide
runs down a uniformly inclined beach of slope α. The profile of the bottom is
given by h(x, y, t) = h(x)−f(x, y, t) where f is the perturbation. The dimensional
equation governing the motion of the free surface and considered by Sammarco
and Renzi is as follows

ζtt − gs∇.(x∇ζ) = ftt (53)

where s is the beach slope and ζ the free surface elevation. The normalization of
this equation made them consider

xζxx + ζ + xζyy = ζtt − ftt (54)

where the variables and coordinates are now dimensionless such that f(x, y, t) =
exp(−(x− t)2) exp(−4y2) as both the free surface elevation and the perturbation
have been scaled by the vertical thickness of the landslide. It should be noticed
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4.1 Seabed perturbation and normalization

that the landslide is slightly longer (in the offshore direction) than wide (in the
shoreline direction), is symmetric with respect to the x-axis and its dimensionless
velocity is set to 1.

PS

NS

δ

Landslide

Two-Dimensional Grid

Figure 9: This is the geometry of the three-dimensional problem. The physical and
staggered shorelines (PS, NS) are on the left-hand-side (y-direction). δ is the distance
between the two in the referent configuration. All other frontiers of the domain are open
boundaries. The landslide is set to move away from the shoreline (in the x-direction) at
a constant speed.

It is remarkable that equation (54) is independent of the slope angle and only
invokes the perturbation function through its acceleration ftt. The normalization
of the Lagrangian three-dimensional linear equations (32) (33) (34) is performed
using L = 1 m and H = Lα for the horizontal and vertical variables respectively.
The dimensional time is normalized by L√

gH
. The water depth is consistently

scaled by H and takes the following dimensionless form

h(x, y, t) = x− T exp(−(x− t)2) exp(−4y2) (55)

where T is the dimensionless thickness of the landslide. The non-dimensionalization
of the governing equations shows that the slope angle α is not a relevant param-
eter in our simulation. Note that the complete water depth function, that is the
straight slope and the perturbation, is invoked twice in the Lagrangian continuity
equation (34). Therefore the value of T matters in the Lagrangian simulations
contrarily to what would be predicted by the Eulerian equivalent (54). However,
the two-dimensional equivalent of this equation and the associated derivation can
be found in the work of Tuck and Hwang [19]. Their authors clearly show that
the resulting equation has a convenient form because the water depth function is
approximated by the constant-slope seabed when there is no time-derivative to
apply. This approximation explains why the bottom perturbation is only found
on the right-hand-side of equation (54) or (2.1) in Sammarco and Renzi [8] and
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4.2 Initial value problem for a three-dimensional landslide

allows a convenient scaling to get rid of T . This difference in the two formulations
is somehow attenuated by the infinitely thin landslide assumption. This condition
simply forces Tα � 1 and no visual differences could be observed as we ran our
simulations for different values of T in that range. Note that we had to multiply
by 1

T
the dimensionless free surface elevation Z predicted by our numerical simu-

lations to obtain a dimensionless waves height comparable with what Sammarco
and Renzi presented [8].

4.2 Initial value problem for a three-dimensional landslide

The transfer of the Eulerian initial values to the Lagrangian framework is probably
the trickiest part as one tries to compare the two different approaches. In partic-
ular, the calm water free surface with zero initial velocity proposed by Sammarco
and Renzi is somehow deceptive. Indeed, the initial value problem ηt(x, y, 0) = 0
is not always equivalent to Zt(a, b, 0) = Xt(a, b, 0) = Yt(a, b, 0) = 0. While the
calm water free surface condition can actually be enforced by having no initial
displacements4, i.e. η(x, y, 0) = 0 ↔ Z(a, b, 0) = X(a, b, 0) = Y (a, b, 0) = 0, the
initial velocities cannot be uniformly zero if the seabed deforms at time t = 0. Let
us now recall the three-dimensional linear continuity equation derived in preceding
sections.

Z(a, b, 0, t) = h(a, b, 0)(1−Xa − Yb)− h(X + a, Y + b, t) (56)

This equation involves both Lagrangian and Eulerian variables as h is a function
of the instantaneous location, on the contrary of X, Y, Z, which only depend on
the referent positions and time t. One has to remember that the time derivative
of Z(a, b, 0, t) is a material derivative. As a consequence, assuming X = Y = 0 at
t = 0, we seek Xt(a, b, 0), Yt(a, b, 0) satisfying

Zt(a, b, 0, t) = h(a, b, 0)(−Xa,t−Yb,t)−ht(a, b, 0)−Xtha(a, b, 0)−Ythb(a, b, 0) (57)

This equation is a linear first order partial differential equation on both Xt and Yt.
There is only one boundary condition for the two-dimensional velocity vector on
the shoreline. Therefore, the integration of (56) does not have a unique solution.
Numerically solving (56) is surprisingly tedious and we assumed that Yt = 0 could
be set to zero as Sammarco and Renzi observed that the water was initially pushed
forward at the earliest time of their analyses. We do not deal with the boundary
condition on the shoreline since the particles on the shore are not part of our
grid. Indeed, we recall that in the referent configuration, the closest points to

4As a general remark, whenever the free surface is supposed to be initially still, the initial
situation can match the referent configuration and the Lagrangian displacements should be set
to zero. This intuitive solution is not unique but perfectly satisfies the continuity equation.
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4.3 Results and discussions

the shoreline that are being updated in our code are moved away by a distance
equal to δ for stability reasons. Hence, we use (58) to find Xt on this staggered
shoreline, and (56) is then integrated to obtain it everywhere else.

Zt(a, b, 0, t) = 0 = −ht(a, b, 0)−Xtha(a, b, 0) (58)

Note that we take the physical domain large enough (e.g. amax = bmax = 16) so
that the initial horizontal displacements induced by the localized disturbance are
approximately zeros at the offshore boundaries, i.e. X(amax, b, 0) = X(a, bmax) ≈
0∀(a, b). This large domain also allows us to consider that reflections coming from
these offshore boundaries do not have time to travel all the way back to the point
where we study the runup phenomenon (i.e. (a, b) ∈ [0, 4]2) for the time span
considered (i.e. t ∈ [0, 7]). Ideally, we would like to enforce an open boundary
conditions but because of the difficulty of its implementation we simply extended
our computational domain to an ideal size5. Finally, the initial value integration is
surely arguable and the transfer of the initial value problem from one framework
to another should be standardized in the near future. However, as showed in the
following section, this simplification yielded acceptable results to be compared
with those of Sammarco and Renzi [8].

4.3 Results and discussions

Here we validate our formulation and its numerical implementation against the
closed form solution of (54) derived by Sammarco and Renzi in 2008:

ζ(x, y, t) =
2

pi

∞∑
n=0

∫ ∞
0

exp(−kx)Ln(2kx)Tn(k, t) cos(ky)dk (59)

The functions Ln are the Laguerre polynoms and Tn is given by equation (2.16)
in [8] and is a function of the variable of integration k and time t. The index n is
referred to as the mode number such that n = 0 is the fundamental mode, n = 1
the first mode, ... etc.

5By which we mean that a larger domain induces no difference for the runup close to the
initial position of the landslide whereas a smaller domain produces observable differences.
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4.3 Results and discussions

Figure 10: Spatial snapshots at time t = 1.5 of the (a) theoretical solution with 6 modes
considered (b) simulation of the Eulerian equation and (c) simulation of the Lagrangian
set of equations. The numerical simulations were both run with a uniform spatial step
of 0.025 in the two horizontal directions and were converged in terms of both time
and spatial steps. They are qualitatively identical but largely differ from the 6 modes
analytical solution derived by Sammarco and Renzi.

The integrals in (59) tend rapidly to 0 as n increases. Thus Sammarco and Renzi
displayed snapshots of the free surface for a limited number of 6 modes6. It
turns out that the 6 modes solution is not really well converged and present wave
patterns that are absent from the simulations of both the Eulerian (54) and La-
grangian (32) (33) (30) equations. The most striking example is presented in
figure (10) where the analytical 6 modes solution is compared with the numerical
simulations of the Eulerian7 and Lagrangian equations at time t = 1.5. Fortu-
nately, it can be seen in figure (11) that the closed form solution they derived
eventually tend to the numerical solution as the number of modes increases.

6Figure 5 in [8].
7We discretized the Eulerian equation and simulated the landslide’s generated waves with a

basic finite-difference technique only to verify that it was coherent with our Lagrangian simula-
tions.
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4.3 Results and discussions

Figure 11: Spatial snapshots at time t = 1.5 of the theoretical solution with (a) 6 modes
(b) 9 modes (c) 12 modes and (d) 17 modes considered. The analytical solution tends
to the numerical predictions presented in the previous figure. Note that the sharp edges
are due to the low resolution of the plots.

Finally, we present the numerical solutions at time t = 0.5, 1.5, 4.5, 7 of the La-
grangian equations in figure (12). They look like the 6 modes solutions issued
by Sammarco and Renzi but some major differences (e.g. upper left corner of
the predictions at time t = 1.5 or lower right corner at t = 7.0) are observable
and indicates that more than 6 modes should be taken into account for a phys-
ical interpretations of the analytical solution. Nonetheless, most of their com-
ments are similar to what can be inferred from figure (12). Specifically, water is
initially pushed forward (figure (12.a)) and a depression wave, landward of the
landslide’s peak occurs shortly after (figure (12.b)). As time goes by, the land-
slide dives into deeper water such that the generated continuous elevation wave
slowly vanishes and edge waves become dominants along the shoreline direction
(figure (12.c) and (12.d)). All these effects have already been observed by Lynett
and Liu [15] and show that the consideration of a three-dimensional fluid domain
gives physical insights on waves’ propagation that could not be extrapolated from
two-dimensional studies.
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4.3 Results and discussions

Figure 12: Spatial snapshots at four different times of the free surface elevation with
a zero initial vertical displacement and velocity. The simulation is based on the three-
dimensional Lagrangian linear model. (a) t = 0.5, (b) t = 1.5, (c) t = 4.5, (d) t =
7.0. These predictions are obtained for non-uniform grids with 1024 and 512 nodes in
the landslide direction of propagation and transverse direction respectively. Note that
the computational domain is 4 times longer and wider than what is displayed to avoid
reflections from the offshore boundaries.
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5 Conclusions

We presented two- and three-dimensional numerical simulations of linear and non-
linear long-waves in a Lagrangian framework. The motivations for this work were
numerous.

As said in the introduction, very few analyses of shallow-water waves have
taken advantage of the Lagrangian point of view. Since the ocean can be seen as
a continuous medium, following fluid particles is inconvenient in many practical
applications. However, a few situations may be perfectly fitting for a Lagrangian
approach. For instance, the runup of nonlinear long-waves, which can displace the
shoreline over large distances inland, may be more easily studied in the Lagrangian
than in the Eulerian framework.

Shuto [5], Shuto and Nobuo [12] and Fujima [6] contributed to the development
of the Lagrangian approach, but many more supported and further enhanced the
findings of Carrier and Greenspan [7] in the Eulerian framework, thus leaving space
for new works in Lagrangian. Under strong restrictions, analytical predictions of
extreme runup for different initial waveforms have been successfully obtained in
the past in the two different frame of reference. Fortunately, the condition of a
constant-slope seabed assumed by Carrier and Greenspan in 1958 was somehow
relaxed by the work of Synolakis [10], as his formulation allows the analysis of
waves running up and down a combination of constant-depth and constant-slope
seabeds. However, their derivations remain valid for very specific initial profiles
only. This makes their predictions potentially nonphysical if their initial waveform
does not resemble well enough real-life waves. Specifically, the solitary wave was
thought for many years to be a good approximation of tsunamis, but Madsen et
al. [20] denied this paradigm and have advocated the use of field measurements
to initialize both experiments and computations if physical interpretations of geo-
physical tsunamis are to be drawn. Therefore, all analytical solutions that have
been derived under the assumption of solitary wave cannot predict accurately geo-
physical tsunamis’ extreme runup and drawdown.

Numerical models are expected to provide further insights because they do not
depend on initial waveforms and can handle arbitrary seafloors. In that respect,
we implemented a numerical scheme that can simulate the propagation and runup
of two- and three-dimensional long-waves over any type of seabed. Incompressibil-
ity, vertical irrotationality and inviscid flow were assumed while nonlinearity was
included in the model. The two- and three-dimensional numerical models were
successfully validated against existing analytical results, though the scheme needs
improvements. In particular: offshore boundaries are not dealt with such that out-
going waves leave the computational domain; forward-finite-difference techniques
may not be physically satisfactory at the shoreline; and, the procedure to transfer
the initial-value problem from the Eulerian to the Lagrangian framework should
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be standardized.
Finally, our objectives are not to overthrow existing softwares used for tsunamis’

forecasting but rather to rapidly be able to research on revolutionary topics. For
instance, the Method of Splitting Tsunami (MOST) developed by Titov and Syno-
lakis is the standard model used by national institutions for tsunamis’ propagation
and inundation forecasting and certainly deserves all the credits it received. How-
ever, such a program may not be appropriate for research purposes. Therefore,
we expect to extensively use our code to investigate new practical applications. In
particular, we hope to work on new tsunami mitigation techniques.
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