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Abstract :
Near-wall turbulence controls momentum and heat exchanges between a fluid and bounding surfaces. The
near-wall turbulence itself depends on the surface topography, which may evolve due to physical processes
such as phase changes driven by flows. Hence it is of interest to investigate whether positive feedback
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remapping method. We find that the flow is laminar and the heat flux tends to smooth the topography
for Reynolds numbers based on the friction velocity of one hundred and for topography amplitudes less
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percent of the channel half width, near-wall turbulence exists and heat fluxes can lead to morphological
instability and growth of surface textures.
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Introduction

Ice melting is one of the critical consequences of global warming, in particular through its impact on rising sea
levels (Pritchard et al. 2012 [15]; Rignot et al. 2013 [16]; Kennicutt 2019 [12]). The understanding of this
phenomenon by the scientific community is of paramount importance in order to prevent or limit its impact.
We can notably see the importance of this melting at the North Pole on the NASA satellite image (Figure
1A) with the difference in the amount of ice at the North Pole between September 1984 and September 2016
as there is far less ice in 2016 than in 1984. Icebergs, ice shelves and sea ice are kilometre-scale objects whose
evolution are controlled by interface melting. This interface can vary rapidly, up to several meters horizontally
in one day, as recently observed by Sutherland et al. (Sutherland et al. 2019 [17]). Therefore it is essential to
understand the physics governing this water-ice interface. We will focus in this paper on the turbulence near a
corrugated ice-water interface in particular.

Observations of the water-ice interface in nature have revealed a particular topography taking the form of
wave patterns. These patterns are called “scallops” (e.g. Carey 1966 [3]; Curl 1966 [6]; Blumberg & Curl 1974
[1]; Thomas 1979 [18]; Gilpin; Hirata & Cheng 1980 [8]; Hanratty 1981 [9]; Nelson; McLean & Wolfe 1993 [13];
Wykes et al. 2018 [19]). These are structures of the order of ten centimetres which repeat with a wavelength
of the order of ten centimetres too. We can see their shapes on the photo of Figure 1B where the wavelength
of the pattern is of the order of 10 cm. Mitchell Bushuk and his team have experimentally demonstrated this
scallop topography of the water-ice interface. They have shown that, under specific experimental conditions, the
ice-water interface goes through three regimes: (1) a scallop development regime in which melt rates are highest
in scallop troughs, acting to amplify existing perturbations in the ice surface; (2) a scallop adjustment regime
with highest melt rates over scallop crests, acting to dampen existing perturbations; and (3) an equilibrium
scallop regime in which melt rates maintain a fixed scallop geometry which migrates downstream over time.
(Bushuk 2019 [2]). This topography is of great importance on ice melting, indeed the average melting rate can
be at least doubled in a scallops topography compared to a flat one. (Bushuk 2019 [2])

The water-ice system is not the only system to form particular periodic topographies. Actually, this is also
the case at the interface between a fluid and a granular material such as sand. In this case the wavelength of the
repeated pattern can vary from the order of a centimetre, observed on of the seabed, to several kilometres, such
as dunes in deserts. The shearing of the fluid at the interface mainly governs these morphologies (Charru 2013
[4]). The problems of morphological instabilities at solid fluid interfaces triggered mathematical developments
(Hanratty 1981 [9]), subsequently verified experimentally, but not demonstrated numerically in the transient
regime, a regime between the laminar regime and the turbulent regime in which we cannot make an asymptotic
derivation as shown by François Charru and his team in the case of sand ripples and dunes (Charru 2013 [4]).
It turns out that the morphological stability arises in this transient regime, which is why it would be very
important to test it numerically. For now we only have a phenomenological explanation for the morphological
instability found experimentally in the transient regime. This internship studies this problem, with the aim of
answering the question: Is morphological instability possible at the water-ice interface and what is the effect of
the control parameters on its evolution? For this, we use a simplified model of topography formation which can
be formalised mathematically like this (Hanratty 1981 [9], Couston 2021 [5])

dl(t)
dt

= qwater − qice (1)

with l(t) the thickness of the ice, qwater the input heat flux from the fluid and qice the heat flux at the ice
top. This formalism has been particularly discussed in the phase change, dissolution and granular material
communities. During this internship, we did not include the variation thickness of the ice, we only looked at
the input heat flux from the fluid in order to see if a morphological instability was possible at the water-ice
interface. Indeed, we hypothesise that a morphological instability is possible if a pre-existing topography forces
the flow to provide excess heat where the ice is already thinnest. This hypothesis greatly simplifies the problem
as it allows us to discard phase changes (or boundary dynamics more generally) by considering time-invariant
topography.

This internship can be seen as the continuation of the work of Louis-Alexandre Couston et al. (Couston
2021 [5]). They have already been able to show, with the phase-field method in 3D, the emergence of particular
topography dominated by keels and channels that are aligned with the direction of the mean flow (Figure 1C),
as well as their evolution according to the stability of the flow. However, due to numerical constraints, they
could not go into the range of control parameters necessary to reach the possibility of emergence of scallops.
Indeed, this would require high control parameters unattainable by the phase-field method with the current
computational capabilities. This internship is a draft solution test to circumvent these problems by using the
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domain remapping method. This method will help to go from a complicated and irregular domain to a simple
and flat domain by modifying the basic equations with a coordinate change.

We take the Poiseuille flow as a canonical flow and we limit ourselves for simplicity to 2D flows. This
system will be coded in python using the Dedalus framework package. Dedalus is a differential equation solver
using spectral methods. It is written in python and is particularly designed for studies of fluid mechanics with
explicit boundary conditions and explicit initial conditions. This report will study the case of the Poiseuille
plane without topography at first, then we will study the effects of topography, with a sweep in topography
amplitude and flow intensity.

(A)

(B)

(C)

Figure 1: (A) Difference in the amount of ice at the North Pole between September 1984 and September 2016,
Goddard Space Flight Center (NASA) (B) Photos of scallop formations on the sides of icebergs taken in the

Southern Ocean with a remotely operated vehicle (Hobson, Sherman & McGill 2011 [10]) (C) Interface
topography between a fluid and a solid, channels in the ice are highlighted in brown while keels are highlighted

in green. They follow the flow direction which is along to x (Couston 2021 [5]).
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1 Poiseuille flow dynamics in plane channel
The objective of this first study is to become familiar with the Poiseuille flow which will serve as a basis for
the study of non-plane boundary conditions. It also provides checks of the efficiency of our programs as the
Poiseuille flow is already a well-known flow in the literature. Therefore, we study the properties of a simple
Poiseuille flow, ie in the case where the flow is bounded by two fixed flat plates. We study in particular the
properties of the statistically-equilibrated flow when increasing the Reynolds number, which is the main control
parameter.

1.1 Model

System
We consider a classical Poiseuille flow, composed of two fixed plates at h and at −h. Those plates are of length
L = 8h, giving an aspect ratio of 4 between length and width. In the channel, the fluid flows at the speed u, due
to a pressure difference Π = Pi−Po

L > 0 (imposed pressure-gradient force), where Pi is the pressure of the inlet
of the channel and Po the pressure of the outlet of the channel with Pi > Po. We also impose a temperature
Tb at the bottom and Tt at the top of the channel. We note T the fluid temperature, p the fluid pressure, ρ
the fluid density, k the fluid thermal conductivity, cp the fluid specific heat capacity and η the fluid dynamic
viscosity. We define a Cartesian coordinate system (x, z) centred on the bottom of the channel with the z-axis
vertically upward, i.e. opposite to gravity. Figure 1.1 shows our problem schematic.

Figure 1.1: Schematic of the Poiseuille flow in plane channel system.

Equations
We consider a generic linear equation of state for the fluid, with the density ρ related to temperature T through

ρ = ρf (1− αT ) (1.1)

with α the thermal expansion coefficient and ρf the reference density. The fluid velocity u = (u,w) and
pressure p evolve according to the mass conservation (equation (1.2a)) and the Navier–Stokes equations (equation
(1.2b)) under the Boussinesq approximation. The fluid temperature T evolves according to the energy equation
(equation (1.2c)).

∇.u = 0 (1.2a)
ρf (∂tu+ u · ∇u) = −∇P + η∆u+Πex + ρfαgTez (1.2b)

∂tT + u · ∇T = κ∆T (1.2c)

with g the gravitational acceleration and κ = k
ρf cp

.
No-slip boundary conditions impose zero velocity at the wall and we impose a temperature Tb at the bottom

and Tt at the top of the channel, leading to
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u(z = −h) = 0, u(z = h) = 0 (1.3a-b)
T (z = −h) = Tb, T (z = h) = Tt (1.3c-d)

Stationary solution
It can be shown by symmetry and invariance properties that the stationary solution of the problem is the
following

up =
Π

2η
(h2 − z2) (1.4a)

wp = 0 (1.4b)

Tp =
∆T

2

z

h
+

Tt + Tb

2
. (1.4c)

This solution will be used all along this report as a reference.

Dimensionless equations
Let us define the shear τ

τ = η∂zu. (1.5)

The wall shear τw is directly proportional to the imposed pressure gradient when applied to the stationary
solution of equation (1.4a). It is used for non-dimensionalization,

τw = Πh (1.6)

from which we define the shear velocity uτ (Zonta & Soldati 2018 [21]) by

uτ =

√
τw
ρf

. (1.7)

Using this shear velocity, we define dimensionless variables, denoted by tildes, as

u = uτ ũ, x = hx̃, z = hz̃, t =
h

uτ
t̃, p = ρfu

2
τ p̃, T = ∆T T̃ (1.8a-g)

with ∆T = Tb − Tt (Tb > Tt).
Substituting equations (1.8) into equations (1.2) and (1.3), we obtain the dimensionless equations

∇̃.ũ = 0 (1.9a)

∂t̃ũ+ ũ · ∇̃ũ = −∇̃P̃ +
1

Reτ
∆̃ũ+ ex − Riτ

2
T̃ ez (1.9b)

∂t̃T̃ + ũ.∇̃T̃ =
1

ReτPr
∆̃T̃ (1.9c)

ũ(z̃ = −1) = 0 (1.9d)
ũ(z̃ = 1) = 0 (1.9e)

T̃ (z̃ = −1) =
Tb

∆T
(1.9f)

T̃ (z̃ = 1) =
Tt

∆T
. (1.9g)
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The control parameters in equations (1.9) are the Prandtl number, Pr, which compares kinematic viscosity
to thermal diffusivity, the friction Reynolds number, Reτ , which compares the pressure-gradient force to viscous
dissipation and the Richardson number, Riτ , which compares buoyancy forces to flow shear. They are related
to the physical parameters through

Pr =
ν

κ
, Reτ =

ρfuτh

η
, Riτ = −2ρfαg∆T

Π
. (1.10a-c)

In a classical ocean-ice system, the Prandtl number is more about Pr ≃ 10. However because of numerical
constraints, here we fix it to Pr = 1. The friction Reynolds number, Reτ is the control parameter that we will
vary. The Richardson number is fixed to zero, Riτ = 0. In oceanography, the expression of Richardson is often
given by :

Riτ =
N2

(∂zuτ )2
(1.11)

with N is the Brunt-Väisälä frequency, corresponding to a measure of stability of a fluid to vertical displacements
(Vallis & Geoffrey K 2017 [20]). Therefore fixing Riτ = 0 is the same as considering the limiting case of shear-
dominated flow, wherein buoyancy effects are negligible.

From this non-dimensional system, the stationary solution can be rewritten, in dimensionless form,

ũp =
Reτ
2

(1− z̃2) (1.12a)

w̃p = 0 (1.12b)

T̃p =
1

2
z̃ +

Tt + Tb

2∆T
. (1.12c)

Variables of interest
We define the following rate of flow averaged in x in 2D by:

D(t) =<

∫ 1

−1

ũdz̃ >x̃ . (1.13)

Applying it to the dimensionless stationary state, we get

Dp(t) =
2

3
Reτ . (1.14)

Then, we define our first variable of interest D(t) corresponding to the following rate of flow averaged
in x in 2D scaled by that of the stationary state:

D(t) =
D(t)

Dp(t)
. (1.15)

We use D(t) to define our second variable of interest D corresponding to its averaged according to t:

D =< D(t) >t . (1.16)

Now, we define the heat flux Φw(t) of the flow at the top wall averaged in x, by:

Φw(t) =< −k∂zT (z = h) >x . (1.17)

Applying it to the dimensionless stationary state, we get

Φwp = −k

2
. (1.18)
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Then, we define the Nusselt Nu, our third variable of interest, corresponding to the ratio between the
heat flux of the flow at the top wall averaged in x and that of the stationary state:

Nu(t) =
Φw

Φwp

. (1.19)

We use Nu(t) to define our fourth variable of interest Nu corresponding to its averaged according to t:

Nu =< Nu(t) >t . (1.20)

1.2 Steady state

Previous works (Falkovitch 2018 [7]) have shown that for every Reynolds number the flow reaches at the end of
a certain time a steady state, ie a regime either stationary, ie time independent, or statistically steady, ie we
have a particular pattern that repeats itself overtime.

Objectives and problem parameters
We study this stationary state qualitatively using simulation images. To that end, we will plot the dimension-
less temperature T̃ , the dimensionless horizontal speed ũ and the dimensionless vertical speed w̃ at different
dimensionless time t̃ in order to look for a steady state. It should also be possible to identify it quantitatively
in our simulations by studying D(t) and Nu(t). The principle being that if a steady state is reached, these two
variables should, from tp which defines the start of the statistically-steady state, either do not vary anymore
(stationary state) or oscillate around an average value that no longer varies over time (statistically steady state).

We solve numerically the dimensionless equations (1.9). We start each simulation from a superposition of the
stationary Poiseuille state of equations (1.12), and a white noise with zero-divergence (see Appendix A.1). For
the resolution parameters, we made the choice to settle the RK222 timestepper and a safety parameter of the
CFL of 0.1 . The timestepper is the algorithm used to time integrate the solution forward. The safety parameter
is a prefactor multiplying the time step calculated via the CFL condition, which is typically smaller than one
thus reducing the time step and stabilising time integration. For the spatial resolution, which corresponds to
the number of points that we take spatially to solve our problem, we choose Nx = 512 in the ex direction with
the RealFourier discretization method of Dedalus. In the ez direction, we choose a resolution Nz = Nx/2 = 256
with the ChebyshevT discretization method of Dedalus (see Appendix A.2).

Results
We carried out these simulations for Reτ ∈ {10, 30, 50, 70, 90, 100, 107, 108, 110, 120, 125, 130, 140, 150, 152, 155,
160, 165, 170, 175, 200, 250, 300, 400, 500, 600}. We will study in this part Reτ = 100 and Reτ = 200 in particular.
The frames for Reτ = 100 and Reτ = 200 can be found respectively Figures 1.2 and 1.3. We show the temporal
evolution of the case Reτ = 100 through 3 snapshots obtained at different times. After being destabilised by
a white noise (Figure 1.2A), the flow goes trough a transitory state (Figure 1.2B) that reverts back to the
stationary state alone (Figure 1.2C). Then, we show the temporal evolution of the case Reτ = 200 through
6 snapshots obtained at different times. After being destabilised by a white noise (Figure 1.3A), the flow
goes trough a transitory state (Figure 1.3B) that ends in a meta-stable state (Figure 1.3C). At some point
this meta-stable state looses his stability (Figure 1.3D) and transits slowly, in contrast to the first transition,
(Figure 1.3E) to a permanent state (Figure 1.3F).

This qualitative description is made quantitative with the time evolution of D(t) and Nu(t) shown in
Figures 1.4 for Reτ = 100 and Reτ = 200. We can see that after a relatively strong transient, the variables
stabilise at fixed values. For Reτ = 100 (Figures 1.4A), we can see that the D(t) and Nu(t) reach exactly the
values of one, ie the stationary state value. On the contrary, for Reτ = 200 (Figures 1.4B), D(t) drops to a
lower value around 0.4 and Nu(t) rises to a higher value around 4.
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(A) (B) (C)

Figure 1.2: Simulation for Reτ = 100, dimensionless temperature T̃ , dimensionless horizontal velocity ũ and
dimensionless vertical velocity w̃ for different dimensionless time t̃: (A) Initial state with white noise. (B)

Transitory state. (C) Stationary state.

(A) (B) (C)

(D) (E) (F)

Figure 1.3: Simulation for Reτ = 200, dimensionless temperature T̃ , dimensionless horizontal velocity ũ and
dimensionless vertical velocity w̃ for different dimensionless time t̃: (A) Initial state with white noise. (B)

First transitory state. (C) Meta-stable state. (D) Second transitory state. (E) Stabilisation of the statistically
steady state. (F) statistically steady state.
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(A) (B)

Figure 1.4: Flow rate D(t) and Nusselt Nu(t) for different Reτ : (A) Reτ = 100 : steady state reached for
t ≃ 30. (B) Reτ = 200 : steady state reached for t ≃ 60.

We notice that for any Reτ , we have a stationary or a statistically steady state which is reached (not shown
here). Indeed, D(t) and Nu(t), from a certain time tp, do not vary anymore or oscillate around an average value
no longer varying over time. For high Reτ , the state still vary in time, but the pattern always repeats itself
(not shown here). It is interesting to notice that the flow rate drop in the statistically steady state and that
the heat flux at the wall increases. For example for Reτ = 200, the heat flux is multiplied by four. The drop
in flow and the increase in the Nusselt are related to an increase in the vertical fluxes of horizontal momentum
and heat, allowed by the nonlinear flow.

1.3 Bifurcation diagrams

In this section we use our diagnostics D(t) and Nu(t) in order to sketch bifurcation diagrams D(Reτ ) and
Nu(Reτ ) of the Poiseuille flow separating the laminar base state from the nonlinear regime. According to
Orszag (Orszag 1971 [14]), the transition from the stationary state to the statistically steady state occurs at
the critical Reynolds centerline Rec = 5772.22 with

Rec =
Re2τ
2

(1.21)

So we are looking for a bifurcation at a Reτ = 107, 44. Our results can be found Figure 1.5. Whether we look
at D(Reτ ) or at Nu(Reτ ), we find that for Reτ < 140, their values are constants. However, from Reτ ≃ 140,
they both change, D(Reτ ) drops and Nu(Reτ ) rises. It is interesting to note that the bifurcation is less clear
in the case of Nusselt.
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Figure 1.5: Bifurcation diagrams D(Reτ ) on the left and Nu(Reτ ) on the right. The temporal average is
carried out only on the ten last friction time of the simulation in order to have the temporal average of the

steady state. However, the simulation time may not be sufficient to reach the steady state. Thus, the variables
are plotted in orange dots in the case where the steady state is not reached and in blue diamonds in the case

where it is reached.

It seems that for us the bifurcation takes place around Reτ ≃ 140 and not around Reτ ≃ 107. A transition
at 140 is not in agreement with the results of Orszag (Orszag 1971 [14]). This discrepancy may be explained by
two ways. First, although we use a white noise, we cannot excite the most unstable mode, which determines the
threshold, because the box is not equal to the wavelength of the critical mode or a multiple of this wavelength.
The question would therefore be, how much must Reτ be increased above the threshold, for the most unstable
mode resolved by our box, to be effectively unstable. It would also be interesting to choose a box length
corresponding to the wavelength of the critical mode or a multiple of this wavelength. Secondly, the problem
may be due to the fact that we have the impression that the permanent state has been reached when it is not.
The system may take more time to be destabilised. We could verify it by carrying out much longer simulations
than what we have done, ie with friction times longer than 150. Due to lack of time, we decided instead to
make progress on simulations of Poiseuille flow in non-planar channels.
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2 Poiseuille flow dynamics in a channel with a
wavy boundary

The objective of this second part is to understand some elements concerning the influence of a non-planar
water-ice interface on its melting and on the flow. For this, we are going to use the Poiseuille flow used in Part
1 to which we will add an asymmetry by changing the shape of the top wall. The problem has non-rectangular
geometry, which cannot be handled by a spectral method that requires a Cartesian grid. To overcome it, we
will implement a domain remapping method. For the boundary topography, we will always use a sinusoidal
wave of wavelength as long as the box.

2.1 Model

Governing equations
Let us note δ(x, t) the position of the wavy boundary with respect to its mean value z=h (Figure 2.1A). We
take the system of the Part 1 in which we just change the support of the flat top by a support whose shape
varies according to x and t. The equations remain almost the same. Only the boundary conditions at z = h
change. They are replaced by

u(z = h+ δ(x, t)) = 0, T (z = h+ δ(x, t)) = Tt (2.1a-b)

which read in dimensionless form:

ũ(z̃ = 1 +
δ(x, t)

h
) = 0, T̃ (z̃ = 1 +

δ(x, t)

h
) =

Tt

∆T
. (2.2a-b)

In order to have a system of equations that can be implemented in Dedalus, which requires a rectangular
computational domain, we realise the following coordinates change:

t̃′ = t̃, x̃′ = x̃, z̃′ =
z̃ + hb

ht

1 + hb

ht
+ δ

ht

(2.3a-c)

We define, for improved readability in the derivation of the domain-remapped, the following variables

γ =
hb

ht
, β = 1 + γ, δ(x, t) = δff(x, t), ϵ =

δf
ht

, A(x, t) =
1

β + ϵf(x, t)
(2.4a-e)

with δf the topography amplitude and f(x, t) the shape function, which is allowed to vary in time for reasons
that will be explained later. We neglect the tildes for clarity from now on. By injecting the change of coordinates
of equations (2.3) in equations (1.9) using equations (2.4), we obtain the following new equations

∂x′u− (ϵAz′∂xf)∂z′u+A∂z′w = 0 (2.5a)

∂t′u− (ϵAz′∂tf)∂z′u+u[∂x′u− (ϵAz′∂xf)∂z′u] +wA∂z′u = [−∂x′P +(ϵAz′∂xf)∂z′P ]ex −A∂z′Pez −
Riτ
2

Tez

+
1

Re
[∂x′2u+Aϵz′(2ϵA{∂xf}2 − ∂x2f)∂z′u− (2ϵAz′∂xf)∂z′∂x′u+ ({ϵAz′∂xf}2 +A2)∂z′2u] + ex (2.5b)

∂t′T − (ϵAz′∂tf)∂z′T + u[∂x′T − (ϵAz′∂xf)∂z′T ] + wA∂z′T =

+
1

RePr
[∂x′2T +Aϵz′(2ϵA{∂xf}2 − ∂x2f)∂z′T − (2ϵAz′∂xf)∂z′∂x′T + ({ϵAz′∂xf}2 +A2)∂z′2T ] (2.5c)
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u(z′ = 0) = 0 (2.5d)
u(z′ = 1) = 0 (2.5e)

T (z′ = 0) =
Tb

∆T
(2.5f)

T (z′ = 1) =
Tt

∆T
. (2.5g)

We do not inject equations (2.5) in this form in Dedalus, the modified system is detailed and explained in
Appendix A.3. Figure 2.1B represents schematically the shape of the system after the domain remapping.
We can see that the boundary conditions are easier, the system is now just a rectangle, just like a plane Poiseuille
flow. However as a consequence the equations get many geometrically-induced additional terms.

(A) (B)

Figure 2.1: Schematic of the system : (A) Wavy system without domain remapping. (B) Wavy system with
domain remapping.

In this paper, we will limit ourselves to a sinusoidal topography of the form

f(x, t) = sin(kxx) tanh(r0t) (2.6)

with kx = 2Π
λ , λ being the wavelength of the sinusoidal topography and r0 a parameter allowing to vary the

speed of the topography growth. The hyperbolic tangent part allows us to keep the initial conditions used in the
Part 1. Note that starting from a flat boundary is especially useful because there isn’t a simple exact analytical
laminar base state solution for a wavy boundary.

Variables of interest
We keep the variables of interest of the Part 1 in order to identify if we reach a steady state. However we change
their application from h to h + δ(x, t). In addition to those, we consider the heat-flux pattern qw(x, t) of the
flow at the top wall, i.e.:

qw(x, t) = −k∂zT (z = h+ δ(x, t)). (2.7)

Applying it to the stationary state of equation (1.4c), we get

qwp = −k∆T

2h
. (2.8)

We will use qwp as a normalisation factor to define our fifth variable of interest Qw(x, t), the heat flux at
the top wall scaled by qwp :

Qw(x, t) =
qw
qwp

. (2.9)

We use Qw(x, t) to define our sixth variable of interest Qw(x) corresponding to its averaged according
to t:

13
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Qw(x) =< Qw(x, t) >t . (2.10)

Note that we perform the average once the permanent state has been reached, in order to have the average
heat flux of the steady state. Indeed, we would like to know the long-term (time-averaged) effect of the wavy
boundary on the heat flux pattern. This will help us to understand how the topography will vary by knowing
where the melting will be the strongest.

Our perturbation being sinusoidal, we can associate a particular wave vector to it, it is the number kx defined
before as kx = 2Π

λ , λ being the wavelength of the sinusoidal topography. We may expect the heat flux pattern
at the top of the wall to depend linearly on the topography amplitude for small amplitudes (even though the
hydrodynamic equations are nonlinear) and non-linearly for large amplitudes since the system depends non-
linearly on the topography. We will not only have the mode kx in response but also other modes. In order
to understand the impact of all modes, we carry out a Fourier transformation of the heat flux. This Fourier
transform being discrete due to the fact that we have a discretization of the x space, we can write it :

TF (Qw) =
∑
n

An(Qw) exp(iknx+Φn(Qw)) (2.11)

with kn = nkx the wave vector norm, An(Qw) the module and Φn(Qw) the phase of the n-th Fourier
coefficient. We study in particular the first two modes 0 and 1, the mode 0 corresponding to the average value
of Qw(x) according to x and the mode 1 the linear response of the system. It is is important to note that for small
perturbations, the mode 1 normally controls the morphological stability whereas for stronger perturbations, the
other harmonic starts to have an important role too. These two particular modes will give us our seventh
variable of interest A0(Qw), our eighth variable of interest A1(Qw) and our ninth variable of interest
Φ(Qw) = Φ1(Qw)−Φtopo, where Φtopo is the phase of the topography. A0(Qw) allows us to identify the global
impact of the interface on the heat flux. A1(Qw) allows us to identify the strength of the linear response of the
heat flux to the interface perturbation. Φ(Qw) allows us to identify the phase difference between the heat flux
perturbation and the topography. If Φ ∈ [−π

2 ,
π
2 ][2π], it corresponds to a phase lag which tends to increase the

topography. Whereas, if Φ ∈ [π2 ,
3π
2 ][2π], it corresponds to a phase lag which tends to smooth the topography.

We also consider similarly-defined hydrodynamic diagnostics based on the shear stress, which are of interested
in flow-granular-media interaction studies. The shear at the top wall τw(x, t) being defined by

τw(x, t) = η∂zu(z = ht + δ(x, t)). (2.12)

Therefore by applying the same logic we have

Tw(x, t) =
τw
τwp

(2.13)

Tw(x) =< Tw(x, t) >t (2.14)

TF (Tw) =
∑
n

An(Tw) exp(iknx+Φn(Tw)). (2.15)

Defining the variables A0(Tw), A1(Tw) and Φ(Tw) = Φ1(Tw)−Φtopo. It is important to note that in the case of
granular medium, the source of instability is not the same as for water-ice system. According to Charru (Charru
2013 [4]), in granular medium, instability results from the destabilising action of fluid inertia, which induces a
phase advance of the shear stress relative to the bed disturbance. Thus, the important point is to look if Φ is
slightly larger than π.

The heat flux and the shear normal to the wall are interesting diagnostics since they are part of the global
momentum and energy budget of the system taking into account the topography. The flow and the shear are
chosen vertical here for simplicity. Note also that the vertical flux gives information on the local vertical motion
of the wall by phase change.
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2.2 Influence of topography

The goal of this study is to understand some effects of the interaction between the topography and the flow. In
particular, we want to understand how the heat flux and shear at the top wall is modified by the topography.

Simulation parameters
We fix Reτ = 100 and we vary the parameter ϵ from 0.01 to 0.4 (ϵ tested : 0.01, 0.05, 0, 10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.4). In particular, we will focus our attention on the results for two extremes values, a small topography
of ϵ = 0.05 and a stronger one of ϵ = 0.4. We use the RK222 timestepper, a safety parameter of the CFL of
0.05, a spatial resolution Nx = 512 in the ex direction with the RealFourier discretization method of Dedalus
and in the ez direction, we choose a resolution Nz = Nx/2 = 256 with the ChebyshevT discretization method
of Dedalus.

Overall results
For almost all ϵ we have reached a stationary state or a statistical steady state by running our simulations on
a friction time between 60 and 120. There is just for ϵ = 0.35 that we could not reach one. It would have been
necessary for this ϵ to run the simulation longer. However, due to lack of time, we chose not to study it.

As in Part 1, we observe two different final regimes. The first is a laminar stationary state, which no longer
vary in time. It is observed for ϵ < 0.1. We can see the shape of this flow in Figures 2.2A and 2.2B, where
the dimensionless temperature T and the dimensionless horizontal velocity u are respectively represented for
ϵ = 0.05 at a friction time t = 63. The flow is very close to that of Part 1 for low Reynolds, such as Reτ = 100
with plane walls (Figures 1.2C). The second final state is a statistically steady state, varying over time around
an average value. It is observed for ϵ ≥ 0.1. We can see the shape of this flow in Figures 2.3A and 2.3B where
the temperature and the velocity for ϵ = 0.40, at a friction time t = 75. We observe re-circulation cells at the
maximum and minimum of the topography. Moreover, looking at the flow over time, these cells are advected
and then recreated indefinitely (not shown here).

In order to study the evolution of the topography, it is interesting to study the wall heat flux and the wall
shear. In the case of a water-ice system, it is the heat flux at the wall that will mainly guide the evolution of the
interface. This quantity is the most interesting in the case of our study. In the case of a fluid-granular medium
system, it is rather the shear at the wall that will guide the evolution of the interface. This quantity is not the
most relevant in the case of our study. However, it is important to study it for its application to granular media.
In order to carry out this study, as described in the Subsection 2.1, we carry out the Fourier transformation
of these quantities. This allows us to plot the graph of the Fourier transformation modulus An as a function
of n = kn

kx
. In the case of ϵ < 0.1, we notice, that only two coefficients are important, for both the heat flux

and the shear. They are the mode 0 and the mode 1 (Figures 2.2C, 2.2D). On the contrary, for ϵ ≥ 0.1,
higher harmonics appear. We even notice, for the case of wall shear, that mode 0 is no longer preponderant,
mode 1 starts dominating instead (Figures 2.3C, 2.3D). These results are explained by the fact that for small
disturbances, the response of the system is mainly linear, so there is only mode 0 and mode 1. On the other
hand, for higher disturbances, the non-linearities drive the flow, revealing higher harmonics (n ≥ 2).
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(A) (B)

(C) (D)

Figure 2.2: Simulation for Re = 100 and ϵ = 0.05. (A) Snapshot of the dimensionless temperature T at t = 63
(steady state reached). (B) Dimensionless horizontal speed u at t = 63 (steady state reached). (C) An(Qw),

module of the mean over time of Fourier coefficients of equation (2.11). (D) An(Tw), module of the mean over
time of Fourier coefficients of equation (2.15). The error bars correspond to the standard deviation calculated

on the permanent state. They are smaller than the marker size, hence not visible since the flow is laminar.

(A) (B)

(C) (D)

Figure 2.3: Simulation for Reτ = 100 and ϵ = 0.4. (A) Snapshot of the dimensionless temperature T at
t = 75 (steady state reached). (B) Dimensionless horizontal speed u at t = 75 (steady state reached). (C)

An(Qw), module of the mean over time of Fourier coefficients of equation (2.11). (D) An(Tw), module of the
mean over time of Fourier coefficients of equation (2.15). The error bars correspond to the standard deviation

calculated on the permanent state.

We are now particularly interested in A0, A1 and Φ as functions of ϵ. The results are plotted in Figures
2.4 for heat flux. We have filled in red the areas where Φ ∈ [−π

2 ,
π
2 ][2π]; they correspond to a phase lag which

tends to increase the topography in the case of water-ice system. We have filled in green the areas where

16



Internship Report PRADOS Corentin

Φ ∈ [π2 ,
3π
2 ][2π]; they correspond to a phase lag which tends to smooth the topography in the case of water-ice

system. We do the same for the shear Figures 2.6. Note that for the shear, those areas are not as relevant
as for the heat flux. In the case of water-ice system, it is not clear if the wall shear will boost phase change.
The phase is more interesting for granular medium. The horizontal distribution of heat flux and shear is shown
more qualitatively on the Figures 2.5 and 2.7 for ϵ = 0.5 and for ϵ = 0.4.

Heat flux results
In the case of heat flux, A0 and A1 (Figures 2.4A and 2.4B) seem to have a linear behaviour up to ϵ = 0.25;
above it seems that the behaviour is more difficult, it even seems to decrease. Concerning the phase (Figure
2.4C), we see that on average for ϵ < 0.1, the heat flow is in phase opposition with the topography, which
means that the interface is morphologically stable (green shading). Above, on the contrary, it is in phase. The
horizontal profiles of the heat flux and shear at the wavy boundary are shown in Figures 2.5. For ϵ = 0.05,
the total heat flux seems to be the superposition of the mode 0 and the mode 1. The maximum of the heat flux
is in the green area which means that it is in opposition with the topography. On the contrary for ϵ = 0.4, the
total heat flux seems not to be the superposition of the mode 0 and the mode 1. The maximum of the heat flux
is in the red area which means that it in phase with the topography.

(A) (B) (C)

Figure 2.4: Simulation for Reτ = 100, Fourier coefficients from equation (2.11) in terms of ϵ the topography
amplitude. The error bars correspond to the standard deviation calculated on the permanent state. (A)

A0(Qw)(ϵ), module of mode 0. (B) A1(Qw)(ϵ), module of mode 1. (C) Φ(Qw)(ϵ), phase lag with respect to
topography. The areas where Φ ∈ [−π

2 ,
π
2 ][2π] are represented in red. They correspond to the increase of the

topography. The areas where Φ ∈ [π2 ,
3π
2 ][2π] are represented in green. They correspond to the smoothing of the

topography.
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(A) (B)

Figure 2.5: Heat flux as a function of x for Reτ = 100 at two different ϵ. On the bottom graph, green thick
dashes represent all modes of Qw(x), thick orange dash-dots represent the mode 0 of Qw(x) and thick blue dots
represent the mode 1 of Qw(x). The area where x ∈ [0, 4] is shaded in red. If max(Qw(x)) is in this area, it

will be in favour of the increase of the topography. The area where x ∈ [4, 8] is shaded in green. If max(Qw(x))
is in this area, it will be in favour of the smoothing of the topography. On the top graph we represent the flow,

between z = 0 and z = 1 + ϵf ; black line represents the topography. On both graphs, the black dashed lines
show the max and the min of the topography and the horizontal red dashes show the limit between the green

and red area: (A) Results for ϵ = 0.05. (B) Results for ϵ = 0.4.

The linear behaviour of A0 and A1 can be partly explained by the fact that the larger the disturbance, the
greater the response of the system. The decrease at higher ϵ can be explained by the fact that the harmonics
take over. The fact that values of A0 and A1 are greater than 1, in Figures 2.4A and 2.4B, shows that with
the addition of the topography, the melting will be greater than for a flow with a plane wall. For the phase, as
it is in phase opposition with the flow for ϵ < 0.1, we will have on average a smoothing of the topography. On
the contrary for ϵ ≥ 0.1, the fact that we are in phase with the topography will tend to make the topography
grow. Although we are in phase, we are not exactly there, so in addition to increasing, the topology will also
tend to drift.

Note that in this case, Φ is not equal to zero. Thus,

Wall shear results
In the case of shear, A0 and A1 (Figures 2.6A and 2.6B) have a different behaviour. A0 seems to only decrease
starting from 1 for small ϵ and reaching almost 0 for larger ϵ. On the contrary A1 does not seem to have any
particular behaviour, its value only seems to vary around 1. Concerning the phase (Figure 2.6C), Φ is always
slightly larger than π, which means that the vertical shear is always maximum (minimum) just downstream of
the topography minimum (maximum). We can see these results visually on the Figures 2.7. For ϵ = 0.05, the
total shear seems to be the superposition of the mode 0 and the mode 1. What is more, the maximum of the
heat flux is in the green area which means that it is in opposition with the topography. On the contrary for
ϵ = 0.4, the total shear seems not to be the superposition of the mode 0 and the mode 1. As for ϵ = 0.05, the
maximum of the shear is in the green.
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(A) (B) (C)

Figure 2.6: Simulation for Reτ = 100, Fourier coefficients from equation (2.15) in terms of ϵ the topography
amplitude. The error bars correspond to the standard deviation calculated on the permanent state. (A)
A0(Tw)(ϵ), module of mode 0. (B) A1(Tw)(ϵ), module of mode 1. (C) Φ(Tw)(ϵ), phase lag with respect to
topography. The areas where Φ ∈ [−π

2 ,
π
2 ][2π] are represented in red. The areas where Φ ∈ [π2 ,

3π
2 ][2π] are

represented in green.

(A) (B)

Figure 2.7: Wall shear as a function of x for Reτ = 100 at two different ϵ. On the bottom graph, green thick
dashes represent all modes of Tw(x), thick orange dash-dots represent the mode 0 of Tw(x) and thick blue dots
represent the mode 1 of Tw(x). The area where x ∈ [0, 4] is shaded in red. The area where x ∈ [4, 8] is shaded

in green. On the top graph we represent the flow, between z = 0 and z = 1 + ϵf ; black line represents the
topography. On both graphs, the black dashed lines show the max and the min of the topography and the

horizontal red dashes show the limit between the green and red area: (A) Results for ϵ = 0.05. (B) Results for
ϵ = 0.4.

For the shear, when the amplitude of the topography increases, we would expect the coefficients An to
also increase. Indeed, we have noticed that the more the amplitude the topography was important, the more
the average flow decreased (not shown here). This fact means that the opposition force of the walls against
the flow increases and, as a consequence, the shear. However, here we only look at the shear which does not
composed the all opposition for. Indeed, the pressure also comes into account in the opposition force against
the flow because the walls are no longer flat. It is also important to note that the calculated shear is not the one
tangential to the wall but the one tangential to ez. It would be physically more relevant to study the tangential
shear instead, because it corresponds better to the opposition force. Moreover, in reality, if we really wanted to
study the opposition force, we would have to start from the tensor of the constraints. It would then be shown
that the shear is not sufficient for the study of the opposition force. It would therefore be more relevant for more
in-depth studies to change the parameters of the simulation accordingly. Concerning the phase, Φ is always
slightly larger than π. Thus, it seems that our results are in the conditions to create instability in granular
medium. Charru (Charru 2013 [4]) explains that the shear will tear off more grains where it is maximum, just
before the hump of the granular bed. The grains will be deposited on the ridge. This process therefore tends
to increase the amplitude of the crest.
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Conclusion
The domain remapping technique has been implemented in Dedalus to allow spectral simulations of a Poiseuille
flow in a physical non-rectangular domain. Results for a Poiseuille flow in a rectangular channel were first
discussed and used as a starting point for simulations in channels with a wavy boundary. We find that the
Poiseuille laminar base state is stable for low shear Reynolds number and unstable for high with a bifurcation
around Reτ ≃ 140. Interestingly, at moderately-large Reynolds number, intermediate meta-stable states arise,
which transition to the final nonlinear statistical steady state over long time scales. For wavy channels, we
focused on Reτ = 100. We found that wavy topography tends to increase the wall heat flux, which could
lead to a faster ice melting than a plane topography. For low topography amplitude (less than 10% of box
height), the heat flux tends to be on average in opposition with the topography pattern, which could lead to the
smoothing of the surface. However, for larger topography amplitude (more than 10% of box height), the heat
flux tends to be on average in phase with the topography, which could lead to the increase of the topography
pattern. Moreover in this case, the phase is slightly in advance, which could induce a drift of the pattern. As
a consequence, morphological instabilities are possible at a water-ice interface; at least for Reτ = 100 and high
enough topography amplitude (more than 10% of box height) in 2D. It would be interesting to look at higher
Reynolds in order to see if morphological instabilities could happen with smaller topography amplitude. For
the granular medium, future studies should implement a wall shear calculated from the constraint tensor rather
than a simple derivation along vertical coordinate. It would be more relevant for an application to real systems
to switch to 3D. The calculations of the domain remapping in 3D have been carried out and show that its
implementation is possible (not written in this report). However, it will be necessary to take into account that
the computation cost will be more important than in 2D.
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A Appendix
A.1 Zero-divergence white noise

In order to create a zero-divergence white noise on the speed, we use an intermediate function g. g is a white
noise field generated in Python on which we have applied a sinusoidal envelope so that it is zero at the boundaries
and maximum at the centre of the flow, such as the speed of the stationary Poiseuille plan solution. From g,
we define a zero-divergence white noise speed u0 = (u0, w0) as :

u0 = −∂zg (A.1)
w0 = ∂xg (A.2)

A.2 Resolution parameters

During the first simulations, we have had several ringing issues. Ringing is a phenomenon that can appear during
a numerical simulation. It corresponds to numerical instabilities which appear spontaneously during a simulation
causing chaotic parasitic behaviours. We then have non-physical results that can cause the divergence of the
simulation [11]. The Figure A.1 is an example. At the beginning, it looks like the simulation run well (Figure
A.1A), but quickly ringing appears on the centre of the dimensionless temperature T̃ and the dimensionless
horizontal velocity ũ (Figure A.1B), as we can see with the chaotic parasitic behaviours. From there, the
system gets carried away and diverges (Figure A.1C).

(A) (B) (C)

Figure A.1: Simulation for Re = 200, dimensionless temperature T̃ , dimensionless horizontal velocity ũ and
dimensionless vertical velocity w̃ for different dimensionless time t̃: (A) The simulation starts to run, there is

no ringing. (B) The ringing starts to appear. (C) The simulation has completely diverged.

To avoid this type of phenomenon, several resolution parameters can be changed. In our case, we studied the
influence of the timestepper, the safety parameter of the CFL and the spatial resolution by performing a sweep
of these three parameters. The timestepper is the algorithm used to time integrate the solution forward. The
safety parameter is a prefactor multiplying the time step calculated via the CFL condition, which is typically
smaller than one thus reducing the time step and stabilising time integration. Finally, the spatial resolution
corresponds to the number of points that we take spatially to solve our problem. In the ex direction, we have
a resolution noted Nx in the RealFourier discretization method of Dedalus and in the ez direction, a resolution
Nz=Nx/2 in the ChebyshevT discretization method of Dedalus.

The timesteppers tested are called RK222, SBDF1 and SBDF2, we varied the safety parameter of the CFL
from 0.01 to 1 and we tested three spatial resolutions Nx = {256, 512, 1024}. For example on the Figure A.1,
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we have the RK222 timestepper, a safety parameter of the CFL of 1 and a spatial resolution Nx = 512. It
comes out of this study that for our system of Part 1, the most efficient timestepper is the RK222 and the
safety parameter of the CFL should be less than 0.1. With this timestepper and this safety parameter of the
CFL, a spatial resolution of 1024 is not required. It is then necessary to use either 256 or 512, depending on
the case.

We therefore made the choice to settle with the following parameters: the RK222 timestepper, a safety
parameter of the CFL of 0.1 and a spatial resolution Nx = 512.

A.3 Domain Remapping Optimisation

Rather than injecting the equations equations (2.5) directly in this form into Dedalus, ... proposes adding
optimisation terms C1, C2, C3, C4 in order to facilitate numerical calculations, by rewriting the equations (2.5a),
(2.5b) and (2.5c) as follows :

C1∇′.u = C1∇′.u+AddMC

avec AddMC = ∂x′u− (ϵAz′∂xf)∂z′u+A∂z′w (A.3a)

∂t′u+ C2∇′P − C3

Re
∆u = C2∇′P − C3

Re
∆u+ ex − Riτ

2
Tez +AddNS

avec AddNS = −u∂x′u+[(ϵAz′∂tf)−wA+u(ϵAz′∂xf)+
1

Re
ϵAz′(2ϵA{∂xf}2−∂x2f)]∂z′u− 1

Re
(2ϵAz′∂xf)∂z′∂x′u

+
1

Re
∂x′2u+

1

Re
({ϵAz′∂xf}2 +A2)∂z′2u+ [−∂x′P + (ϵAz′∂xf)∂z′P ]ex −A∂z′Pez (A.3b)

∂t′T − C4

RePr
∆T = − C4

RePr
∆T +AddHeat

avec AddHeat = −u∂x′T + [(ϵAz′∂tf)− wA+ u(ϵAz′∂xf) +
1

Re
ϵAz′(2ϵA{∂xf}2 − ∂x2f)]∂z′T

− 1

Re
(2ϵAz′∂xf)∂z′∂x′T +

1

Re
∂x′2T +

1

Re
({ϵAz′∂xf}2 +A2)∂z′2T (A.3c)

Actually, this method permits to stabilise the calculation by maximising the number of linear terms on
the left side of the equations while reducing the weight of non linear terms on the right side of the equations.
We made a sweep on C1, C2, C3, C4 to see in what extent those terms helped the programs by comparing the
program of the Part 1 and the one of Part 2 with δ = 0. When we take C1, C2, C3, C4 too low the program has
difficulty not to diverge. When we take them too high, the effect of non linearity are a little blurred. A good
set is to take C1 = C2 = 10, C3 = C4 = 100, we fix them like that for the rest of the simulations.

A.4 Decomposition test

In hopes of improving program convergence while decreasing resolution, we have tried to decompose speed and
temperature into two terms:

u = up + uv (A.4a)

T = Tp + Tv (A.4b)

uv (Tv) beings the difference in speed (temperature) between the speed (temperature) of the flow and that of
the stationary solution. However the result was opposite to the one expected. The simulations were, for the
same resolution, more efficient using the equations on u rather than on uv. The reason for this discrepancy
would be due to the fact that the uv system would be much more sensitive to the slightest variation.
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A.5 Asymptotic expansion of the boundary condition

A lighter method than domain remapping was first tested. The principle is to study the non-planar problem in
the case of infinitesimal perturbation. We then perform an asymptotic expansion of the boundaries conditions
equations (2.2), as follows

u(z = h+ δ(x, t)) = 0 (A.5a)

= u(z = h) + ∂zu(z = h)δ(x, t) + o(δ2) (A.5b)

T (z = h+ δ(x, t)) = 0 (A.5c)

= T (z = h) + ∂zT (z = h)δ(x, t) + o(δ2) (A.5d)

The equations dictating the dynamics of the system are then unchanged, only the boundary conditions are, as
follows to order one:

u(z = h) = −∂zu(z = h)δ(x, t) (A.6a)
T (z = h) = −∂zT (z = h)δ(x, t) (A.6b)

Therefore, we carried out a few simulations with this formalism, but since domain remapping was working,
we did not longer on this method. Nevertheless, it remains an interesting method to verify the results given by
domain remapping in the case of small perturbations. Due to lack of time we did not do this.

A.6 Importance of checking

In order to have a first verification phase of the program with the domain remapping, we carried out a series
of comparison tests between the simulations of Part 1 and the simulations of Part 2 in the case of a zero
topography, ie δ(x, t) = 0. The similarities between the results allowed us to start in the use and interpretation
of the domain remapping simulations in a confident way. This step was important because it allowed us to
think on several numerical points about the implementation of domain remapping. But this step also revealed
a writing error in the implementation of the equations in Dedalus. Indeed, the domain remapping equations
being a bit heavy, it is likely to make a mistake when implementing them in Dedalus.
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