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Introduction

The presence of sub-glacial water pocket, and oceans, on some moons of the solar system is today
highly suspected [1]. The study of the distribution, the dynamic, the scales involved of those reservoirs
is crucial to interpret the satellite data and guide the future exploration mission, to determine the
habitability of the solar system [2].

The existence of such water pocket, has only recently been proposed to explain the presence of brine
deposit, and some little scale topography on the surface of Enceladus for example [3]. The researches
about the formation mechanisms of those liquid cavity under the ice are still a in infancy, and generally
suppose a partial melting due to tidal heating. [4].

Newer studies, focusing on the collapse of such pockets in order to clarify the presence of the topo-
graphy on surface via the ascent of the initially subglacial water, use an empiric uniform and isotropic
model for the heat transfer between liquid and solid [5]. This must be highly approximated to describe
the �ow inside the cavity, since it imposes an arbitrary longevity and a self-similar geometry. For such
system, we expect in particular the disk geometry to be broken : with a positive thermal expansion
coe�cient, the upper half should be unstable and turbulent, while the lower half must be strati�ed.
This implies a strong asymmetry of heat transfers between the top (where the heat convection is do-
minant) and the bottom of the reservoir, which completely breaks with the auto-similar assumption.
So this will have a crucial impact on the �nal results, in particular on the longevity of the the cavity,
and thus, on the cryomagma ascent eruptions previously studied.

Also, some other studies have already been led on the turbulence in a disk geometry [6] [7], but
the boundary conditions where completely di�erent, considering di�erent �xed temperature at the top
and the bottom of it. Here we want the liquid to be at a constant melting temperature along its whole
border. The main di�erence is that cold top and warm bottom boundary conditions can't lead to a
global cooling of the system, which quite a crucial phenomenon for our problem. Still those papers
can help us to get some clue on the turbulence in such a geometry, and to de�ne useful quantities. We
also want to go further by introducing the phase change. The coupling between turbulence and phase
change also already have been studied [8], but still with other boundary conditions, where the global
temperature remains constant.

In this internship, we propose to push forward the knowledge of those water pockets under glacial
environment, thanks to numerical simulations of the �ow at moderate pressure and temperature,
together with some phase changes. In order to have precise but still fast simulations, we will use the
phase �eld method [9]. We will solve the spatial heterogeneity, so that we can observe the exact form
of the cavity in function of time, seeing it grow in a �rst instance, then shrink when the water become
su�ciently cold. We propose here to take initial steps toward a model in order to answer the following
questions :

i) How does the �ow look like in the water pocket ? In particular, what type of turbulence can we
�nd in it ?

ii) How does the shape of the pocket evolve in time and what are the typical temporal scales ?
Introducing the possibility of phase change, shall we see the water disappear, move in space ?

The main goal of the internship is to start some numerical simulations to �nd answers to those
questions. We will only consider 2D �ows, since this is the very beginning of such study, so there is no
need to implement heavy simulations that require too much time and data storage.

The code we are using to compute our simulations is dedalus [10], since the e�ciency of this
open-source and pseudo-spectral code, in phase change studies and in presence of a turbulent �ow, has
recently been proven [8].
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Figure 1 � We expect the convection to be e�ective in the upper part of the cavity, where the cold boundary
is upward the hot �uid, whereas we have the opposite situation in the lower part where the temperature is then
expected to be strati�ed. Moreover, the geometry will evolve during time.

1 Rayleigh-Bénard convection

The �rst step is to learn about dedalus, and try to implement a simple problem, widely docu-
mented : the Rayleigh-Bénard convection. This �rst part of the internship has for the following
goals :

1. To learn how to use dedalus and run our �rst simulations on the supercomputer PSMN

2. To familiarize ourselves with the physical control parameters and how they in�uence the dyna-
mic...

3. But also with the numerical parameters (time and spatial steps, needed resources in time and
size)

4. To understand the �rst turbulence mechanisms, that we can �nd in the �nal system

1.1 Presentation of the problem

1.1.1 Physical problem and equations

We consider a �uid in a 2-dimensional box (length L and height h) with gravity along the vertical
axis. We impose a �xed temperature +∆T/2 > 0 at the bottom and −∆T/2 at the top. We suppose
that the density of the �uid follows a linear evolution with the temperature :

ρ = ρ0(1− β(T − T0)) = ρ0 + δρ with ρ0 = ρ(T0)

Where T0 is a given reference temperature. The lighter hot �uid undergo a force that makes it
buoyant, when the cold one at the top is attracted to the bottom. Thus, we can see an instability : the
Rayleigh-Bénard instability.

To quantitatively understand the problem, we start to give its equations 1.1. We make the Bous-
sinesq approximation (|δρ| � ρ0), which leads to keep the density variations only in the gravitational
term, of the Navier-Stockes equations :
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ρ0

(
∂uuu

∂t
+ uuu · ∇∇∇uuu

)
= −∇∇∇P + δρggg + νρ0∇2uuu

∇∇∇ · uuu = 0

∂T

∂t
+ uuu · ∇∇∇T = κ∇2T

(1.1)

1.1.2 Non-dimensionalisation

The problem involves many parameters : the reference density ρ0, the intensity of the gravitational
�eld g, the kinematic viscosity ν, the thermal di�usivity κ, the di�erence of temperature imposed at
the boundaries ∆T , the size of the box L and h. To reduce the dimensions of the problem, it is useful
to non-dimensionalize those quantities :

x̃ =
x

h

z̃ =
z

h

t̃ =
κ

h2
t

ũuu =
h

κ
uuu =

(
ũ
w̃

) P̃ =
h2

ρ0κ2
P

T̃ =
T − Tlin

∆T

Were Tlin is the purely di�usive solution of the problem (without gravity, nor convection) :

Tlin = −∆T

h
z = −∆T z̃

Thus, the non-dimensional equations, only involve two control parameters (cf. Appendix) :



1

Pr

(
∂ũuu

∂t̃
+ ũuu · ∇̃∇∇ũuu

)
= −∇̃∇∇p̃+ Ra T̃ ezezez + ∇̃2ũuu

∇̃∇∇ · ũuu = 0

∂T̃

∂t̃
+ ũuu · ∇̃∇∇T̃ − w̃ = ∇̃2T̃

With the Rayleigh and Prandlt numbers respectively

Ra =
ρ0h

3β∆T

κν
Pr =

ν

κ

Qualitatively, we understand that Ra acts as an external forcing (in particular it is proportional to
∆T ) and Pr as the comparison of the viscous and thermal di�usivities. Until the end of the internship,
we will only consider Pr = 1, that is to say the scales (time and space) are the same for both types of
di�usivity.

In addition of those two non-dimensional numbers, there is a third one (independent) : the aspect
ratio

γ =
L

h

We will always keep γ = 4 in our simulations, i.e. which is relatively large to minimize lateral con�ne-
ment e�ects on the convective cells.

From now, we forgot the notation .̃ and all the �elds are considered non-dimensional. The only
physical parameter that we will study is Ra.
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1.1.3 Boundary conditions

The boundary conditions that we �x are the following :

Speed No-slip condition at the top and at the bottom : uuu(z = 0) = uuu(z = h) = 000

Temperature Fixed temperature on each border : T (z = 0) = −∆T/2, T (z = h) = +∆T/2

Moreover, since dedalus uses pseudo-spectral methods, at the most one dimension can be non-
periodic, here the vertical one. So we now have another boundary condition : all the �elds must be
periodic along the horizontal axis.

1.2 Physical context

1.2.1 Other non-dimensional numbers

As we just discussed before, the input of the system is fully determined by the Rayleigh number.
But we can de�ne other non-dimensional numbers to study the response of the system for a given Ra :

� Of course the Reynolds number, which is de�ned as follows (function of the non-dimensional
�elds and numbers) :

Re =
Urms

Pr
with Urms =

√
u2 + w2

This number allows us to quantify the turbulence.

� The second aspect of the problem is the heat transfers. To study them, we de�ne the Nusselt
number :

Nu =
q

qlin

This number, compares the vertical total heat �ux q with the �ux in the purely di�usive regime
qlin (where T = −z and uuu = 000), we show (cf. Appendix) that it can be rewritten as follows :

Nu = qdiff + qconv with qdiff = 1− ∂zT and qconv = Tw

1.2.2 Di�erent types of mean

In order to study the properties of the �ow, we'll need to compute some �elds averages. Here we
have three di�erent possible choices, because there are three independent dimensions (1 in time, 2 in
space). Let X be a given �eld, we can de�ne :

Temporal average

X̄(x, z) =
1

tf − ti

∫ tf

ti

X dt

Horizontal average

〈X〉x(t, z) =
1

γ

∫ γ

0

X dx

Vertical average

〈X〉z(t, x) =

∫ 1

0

X dz

By combination of the two space averages, we can get the volume mean :

〈X〉V (t) = 〈〈X〉x〉z = 〈〈X〉z〉x

From those de�nitions, we can derive some important properties, particularly simpli�cations for
the expression of Nu (cf. Appendix) :
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〈Nu〉x(t, z) = 1 + 〈Tw〉x − 〈∂zT 〉x
〈Nu〉V (t) = 1 + 〈Tw〉V
〈Nu〉x(z) = cste

(1.2)

1.3 Numerical Context

For the purpose of numerically solving the problem, we control two parameters : the spatial and
the temporal resolution. The �rst one is simply determined by the number of nodes along each axis :

Horizontal axis We use a periodic base, since the problem itself is periodic along this axis. Let nx
be the number of nodes along x.

Vertical axis Here we use a Chebyshev base, tighter on the boundaries, in order to have a better
resolution of the small di�usive boundary layers. For an aspect ratio γ = 4, we will keep the
number of nodes along the vertical axis nz = nx/2 (cf. Figure 1.1)

= 4
Figure 1.1 � Appearance of the spatial decomposition for nx = 2nz = 16 with γ = 4. The base is periodic along
the horizontal axis and we use a Chebysheb one for the vertical axis.

Considering the temporal resolution, dedalus includes an automatic computation of the time step,
in function of the intensity of the �ow (the Reynlods number) and a numerical parameter called
safety. The smaller it is, the higher the resolution will be.

So �nally, on we will only control two numerical parameters : the numer of nodes along the horizontal
axis nx (which �xes nz = nx/2) and the safety for the time scale. Of course, the values we choose for
those parameters highly depends on the physical ones (that is to say Ra). For instance, we can study
the needed resolution nx in function on Ra... The ratio between the greatest length scale L and the
smallest one (the Kolmogorov length microscale η) evolves like

L

η
∝ Re

3/4

In an other hand, the resolution nx must be su�ciently high to solve the smallest scale : nx ∝ η−1.
Then we use an empirical law, that we discuss in the sub-section 1.4.1 : Re ∝ Ra

1/2, so that we �nally
get

nx ∝ Ra
3/8

In particular, if we multiply Ra by in order of 10, we should increase the resolution by a factor of
10

3/8 ∼ 2.

1.4 Results

1.4.1 Physical considerations

Let's start with the veri�cation of the shape of the �ow. On Figure 1.2, we plot the appearance
of some �elds at two di�erent times : during the transition and the permanent (statistically steady)
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regime. We can clearly see (thanks to the speed �elds u and w) the shape of the expected convection
cells. They can also been observed on the temperature �eld...

Figure 1.2 � Examples of the shape of some �elds. The Rayleigh number has been chosen at Ra = 106. We
see the establishment of the �nal convection cells, through the transition regime.

One of the objectives of this study, is to focus on the non-dimensional numbers Re and Nu. But
before we dive into their dependence with Ra, we can start by observing their behaviour in time and
space. For the sake of clarity, we will always compute their x-average. On Figure 1.3, we can see the
di�erent mean of those numbers Nu and Re. We can do the following observations :

� There is a transition regime, after which the system has a permanent cyclic evolution. On this
permanent regime, the non-dimensional numbers have a stationary behaviour, the �nal totale
average (in time and space) should be computed only in this regime.

� On the pro�les 〈X̄〉x(z), we observe that 〈Nu〉x(z) ∼ cste, which is coherent with the theory (cf.
Appendix). Also, we see that 〈Re〉x(z) vanishes on the border (because of the no-slip condition)
and is maximal in an intermediary zone, between the bulk and the boundary layer. Indeed, the
�uid is "crushed" on the wall because of the convection cells, so it has to have a higher speed,
since it is incompressible.

� For the spatial averages 〈X〉V (t), each number oscillates during the permanent regime, around
a mean value. This is the value that interest us and the only one we will associate to a given
simulation 〈X̄〉V ∈ R.

Now, we know how to associate a single value of Nu and Re to one simulation (that is to say, to
one given Ra). We �nd in the literature that both of the number Nu and Re are linked to Ra in such a
system, with power laws. It is a bit hard to extract one reference law, since there is no consensus and
they can vary from a paper to an other... Still for the Nusselt number, we often �nd the following
propositions : Nu ∼ Ra1/3 for Ra ≥ 1011 [11] or Nu ∼ Ra2/7 [12]. In their unifying theory [11],
Grossman and Lohse points out that the scaling law hardly depends on the domain in the Ra/Pr
plane. Considering our simulations, where Pr = 1 and Ra ≤ 1010, we will keep in mind the theoretical
proposition of that last paper :

Nu ∼ Ra
1/4 Re ∼ Ra

1/2

Note that those results only apply for turbulent �ows, so we can expect to have slightly di�erent values,
since we will also considered non- or moderately-turbulent �ows.

We see on Figure 1.4 the expected scaling law for Nu. The one for Re di�ers of around 10% (0.55
instead of 0.5). This �rst result will not be subject of a further study, it mainly forms an intermediary
step to check the coherence of the physical results.
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Figure 1.3 � Di�erent types of mean for a simulation at Ra = 107. For the volume average in function of time,
the vertical dotted line represent the time at which we start to compute the time-averaged value, displayed on the
graph.
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Figure 1.4 � Evolution of Nu and Re in function of Ra. We can �nd the scaling laws, of Nu ∼ Ra1/4 et Re ∼ Ra1/2
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Figure 1.5 � Convergence of the �nal values, calculated for di�erent numerical parameters nx and safety for
Rayleigh number Ra = 107.

1.4.2 Numerical considerations

Now we try to investigate how these physical results are modi�ed if we change some numerical
parameters. As explained before, we will focus on the impact of the resolution nx (nz �xed to nz = 2nx)
and the safety, that controls the temporal increment. The Figure 1.5 shows the in�uence of that
variables on the �nal results 〈Nu〉V and 〈Re〉V . The relative variations in both case are less than 1%,
so we can consider it as negligible. The safety = 0.07 doesn't seems to bring much precision, so we
will keep safety = 0.2 by now.

As seen before, we must double the resolution nx when Ra is multiplied by 10. Given that consi-
deration, we can predict the resolution needed for the next simulations :
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Ra nx
... ...

105 32
106 64
107 128
108 256
... ...

Table 1 � Resolution in function of the Rayleigh number.
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2 Inclusion of phase changes

To go deeper to the �nal system, we still consider the convection in a �uid band, but now we add a
solid layer at the top of it. We should now take into account that the water can freeze at the interface,
as well as the solid can melt. To implement this, we will use the phase �eld method [9].

2.1 Phase-�eld method

In this method,we keep our equations but add a new �eld : the phase-�eld φ. This �eld takes
values between 0 (solid) and 1 (liquid). There is a zone (called the damping zone), where this �eld
moves from 0 to 1 on a thickness 2δ. This parameter should be as small as possible (since the real physic
interface is only a line), but cannot go under a certain limit, because the spectral method requires only
continuous �eld. There is then a happy medium to choose this thickness δ, we typically take δ = 2 dz
where dz is the local spatial vertical increment.

Solid

Liquid

Solid

Liquida b

Figure 2.1 � The physical system (a) is composed of two phases, separated by a 1-dimensional interface. In the
phase-�eld method (b), the phase becomes a continuous �eld, that varies between 0 and 1 on a damping zone of
thickness 2δ

The equations will be modi�ed as follows :



divuuu = 0

∂tuuu+ uuu · ∇∇∇uuu = Pr∇2uuu−∇∇∇p+ Ra PrT ezezez −
Pr

Γ
(1− φ)uuu

∂tT + uuu · ∇∇∇T = ∇2T − St ∂tφ

5

6
St ∂tφ = ∇2φ+

16

δ2
φ(1− φ)(2φ− 1 + T )

(2.1)

The Navier-Stockes equation has a new term that vanishes in the �uid (φ = 1), so it will only
act as a damping term is the solid. This is the way we mimic the no-slip condition. The heat equa-
tion also gets a new term proportional to the variation of phase ∂tφ, it represents the heat that can
be consumed/produced during the melting/solidi�cation. Finally we get a whole new equation that
describes the evolution of the phase-�eld. The form and the parameters has been optimized, so that
the damping zone remain smaller than every physical length scale at anytime, and of course such that
the system convergence to the real solution (a). There is a more precise discussion of the last term
φ(1− φ)(2φ− 1 + T ) in the Appendix 4.3

There is also three new parameters compared to the classical Rayleigh-Bénard case :
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St The Stefan number is a new dimensionless number that compares the latent heat L with the
potential heat :

St =
L

cp∆T

This is a physical parameter, that has to be �xed as well as Pr and Ra to get a single solution
of the problem.

Γ This one only shows up in the damping term so is a non-physical parameter. It controls the force
of the damping and always has to be bigger than 2dt where dt is a time step. We will take
Γ = 2dtmax here.

δ This is related to the initial damping zone thickness and appears in this equation to provide this
thickness

2.2 Convergence to the real solution

Of course this method is purely arti�cial and the phase �eld doesn't exist in experiments. The real
solution must be calculated, using two di�erent domains with their own set of equations and conside-
ring the dynamic of their interface. This method is designed so that it is equivalent when δ → 0, and
its big advantage is its time demand, which is really low compared to the exact computation. That's
why before trying to implement any physical solution, we tried to investigate the in�uence of the new
terms, to verify the coherence of the results.

The idea is to study the same system as before (on the rectangular geometry), imposing a tempe-
rature di�erence on each side. Before, the boundary conditions were veri�ed thanks to dedalus. Here
we put a solid layer over the liquid, so we need to �nd an other way to �x the temperature at the
top of the �uid (at the interface). The idea is to reuse the penalization method : to verify the no-slip
condition, we put a damping term proportional to (1−φ)uuu in the Navier-Stockes equation... We do
the same for the heat equation, so that the temperature is damped to zero in the solid, so we replace
the phase change term to a damping one and we remove the phase evolution equation, since we wan't
to compare the system with the previous (static) one.


divuuu = 0

∂tuuu+ uuu · ∇∇∇uuu = Pr∇2uuu−∇∇∇p+ Ra PrT ezezez −
Pr

Γ
(1− φ)uuu

∂tT + uuu · ∇∇∇T = ∇2T − Pr

Γ
(1− φ)T

(2.2)

They are the same as equations 2.1, except we removed the equation of evolution of φ, so that the
solid phase keep its initial geometry. We also changed the term of phase change St∂tφ for a damping
one −Pr

Γ (1− φ)T . This is the way we keep the temperature to zero everywhere in the solid (in parti-
cular on the interface). Instead of going in the phase change, the energy will arti�cially leave the disk
in this well of energy.

With that new set of equation, we can impose with dedalus a bottom temperature, so that we
have the exact same problem as before :

� Rectangular geometry (with the same aspect ratio γ)

� Bottom (resp. top) temperature �xed to hot (resp. cold)

� No-slip condition at the bottom and the top

13
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Figure 2.2 � In the �rst case, all boundary conditions are �xed by dedalus. In the second one, the top boundary
conditions are veri�ed thanks to the damping terms, that make the speed and the temperature vanish at the interface.
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Figure 2.3 � Average pro�les (along x and time) of the temperature (left) and the Reynolds number (right) in
the real Rayleigh-Bénard problem (orange) and the damped problem (blue).

But as shown on the Figure 2.2, the way we check the top boundary conditions is di�erent. The goal
is to verify that this penalization method won't have any impact on our results.

On Figure 2.3, the average pro�les of T and Re are very close to each other. In particular the
temperature and the speed seems to vanish in both cases at the top boundary z = 0. This is su�-
ciently satisfying to make us consider the penalization method as a good one, thus we trust our future
simulations, including phase change.

Still we need to zoom a bit in the damping zone to understand the role it has. On Figure 2.4, we
see that the damped �elds don't vanish exactly on z = 0 (the interface), they can only tend to 0 as
we go further in the solid. This will have an impact on some of the next studies, so we should keep
in mind that this penalization method implies a blurred interface that doesn't simply make the �eld
vanishing at the exact analytic position z = 0.
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Figure 2.4 � Average pro�les (along x and time) of the temperature (left) and the Reynolds number (right)
in the real Rayleigh-Bénard problem (orange) and the damped problem (blue). The pro�les have been zoomed
around the interface.

3 The disk geometry

3.1 A cooling problem

Now we consider the following system : a disk of �uid with a certain temperature �eld T ≥ 0
encircled by ice where T ≤ 0. Everything is the same as previously, but still this induce a huge
di�erence : we don't bring energy anymore to the system, the equivalent of the previous bottom border
is now the center of the circle (higher temperature), but here we don't impose a �xed temperature. This
implies that the energy will progressively leave the system and the mean temperature will decrease
in time. Given that, we understand that the Rayleigh number will not be useful anymore : as it is
de�ned with the temperature scale, we should de�ne an e�ective Rayleigh number Raeff that
will follows the cooling process :

Raeff(t) = Ra
〈T 〉(t)
〈T 〉(0)

The same goes with the Nusselt number. In the Appendix, we give an explanation of how we
de�ne it, but of course the goal is still to compare the leaving �ux with the one in the di�usive case.

NB

〈·〉V now indicates a mean only over the liquid volume, the ice shouldn't be taken
into account in this value :

〈X〉 =
〈φX〉V
〈φ〉V

Where 〈·〉V is the total volume average.

3.2 Without melting

Before to consider the �nal system, we're trying to investigate some issues only due to the disk
geometry. Thus we consider a static disk of �uid of radius R = 1. As in sub-section 2.2, we impose a
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no-slip and �xed temperature at the boundary R = 1, thanks to the penalization method, so we keep
the same set of equations 2.2.

∂t〈T 〉V = −
〈

Pr

Γ
(1− φ)T

〉
V

NB

Here we can forget the di�erence between the averages 〈·〉 and 〈·〉V , because the
phase mask φ doesn't move in time and the temperature in the ice vanishes, so
they only di�er from a constant (cf. Appendix 4.4)

3.2.1 Cooling rate

Since the temperature decreases, it could be interesting to focus on the cooling rate. Without
turbulence, we can derive a theoretical cooling rate : the solution of this di�usive problem has the
following temperature distribution (see Appendix)

T (r, t) = e−x0
2tJ0(x0r)

Where J0 is the Bessel function of order 0 and x0 is its �rst root. So here it is clear that the cooling
rate is α = x0

2 ∼ 5.78. This solution can be reached if the there is no convection, that is to say at low
Ra. But for any value of Ra, there is no reason that the temperature decreases with that same rate.
In particular we expect it to be higher, since turbulence allows the �uid in the center to go directly
near, where the energy well (1− φ)T is more e�ective.

On our simulations, we try to check these lasts properties. The Figure 3.1 shows how the tempe-
rature decreases in time. For a low initial Rayleigh number (Ra = 103), the exponential decreasing
is quickly veri�ed, which means that we were close to the di�usive regime. For a higher Ra, it is clear
that this exponential decreasing is reached later. On both simulations, the cooling rate is not exactly
equal to x0

2 ∼ 5.78, this can be due to the fact that the exact �eld T (r, t) cannot be reached since we
work with a penalization method and not on an exact boundary condition. In particular, as shown in
sub-section 2.2, this numerical method is designed to mimic the physical solution everywhere except
close the boundaries, in the damping zone, where of course the calculated �elds, doesn't have anything
physical. This implies that T will never exactly vanish at r = 1, and, because the cooling rate is directly
linked with the size of the disk (cf. Appendix 4.5), this has a non trivial impact of its value. Since we
don't have an other way of computation, we can still check that calculated cooling rate isn't that far
from the theoretical one.
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Figure 3.1 � The evolution of the e�ective Rayleigh number (proportional to 〈T 〉V ) in time for two di�erent
initials Ra (Ra ∈ [103, 105]). The vertical dotted lines are delimiting the time over which we compute the linear
regression (orange).

3.2.2 Stability of the di�usive solution

After this decreasing temperature period, the system reach the stable di�usive solution :

T (r, t) = e−x0
2tJ0(x0r)

In the rectangular geometry, there were a di�usive solution Tlin = −z which is supposed to be
stable for Ra < 1710. Here we can also look for such a critical Rayleigh number Rac at which the
�rst instabilities start to grow. In order to do so, we will use the fact that this is a cooling process :
the e�ective Rayleigh number will go down, until the di�usive regime in installed, for a certain value
Rac of Raeff . Thanks to some calculations (see Appendix), we are able to identify the beginning of
this regime with the equation

Nu(Raeff) = cste

We give on Figure 3.2 the evolution of Nu in function of Raeff during a simulation of an initial
Ra = 105. We see the establishment of the di�usive regime under Rac(Ra = 105) ∼ 10. This value
shouldn't change, given an other initial Ra. We didn't focus more on the exact value of Rac(Raeff),
but on a range of Ra ∈ [102, 108], the critical value is pretty constant Rac ∼ 10. This is consistent with
what we discussed in sub-section 3.2.1, where the linear evolution of Raeff in time seems to start at
Raeff ∼ 10.

One can notice that this is far from the critical number Rac = 1710 is the rectangular geometry...
One explanation for this di�erence may be that here we have a dynamic problem, so some hysteresis
phenomena can appear. In other words, we here estimate a critical Rayleigh number when the tem-
perature decreases, which may not be the same as the one in the static case.

3.3 With melting

Here comes the �nal system we want to study... Let's suppose that we have an isotherm solid with
a little circular cavity (initial radius Ri) of �uid in it. The temperature of the solid is uniform and
equal to the melting temperature Tm = 0, and for the initial temperature �eld in the cavity, we take
the di�usive solution. As we explained in Appendix 4.5, the initial cooling rate (as the di�usive pro�le
is approximately maintained) increases as the radius decreases.
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Figure 3.2 � Evolution of Nu with Raeff for an initial Ra = 103, 105. Nu seems to remain constant under
Raeff < Rac = 10, which testify the establishment of the di�usive regime.

There is a snapshot of how it looks on Figure 4.1, but the problem wasn't exactly the same, since
there were still a temperature gradient in the solid...

As we give some potential heat energy at the initial state (via the higher temperature in the cavity),
we should only see the solid melt, until all this energy is consumed. So there should be an increase of
the �uid's area, which can be calculated from the initial form of temperature Ti (cf. Appendix 4.8) :

∆S =
1

St

∫∫
Ti dS (3.1)

And as explained in the Appendix 4.8, with an initial radius of R = 1 and the �xed initial
temperature �eld T (0), then this integral can be calculated :

∆S =
0.22

St
(3.2)

On Figure 3.3 which shows preliminary simulations of the problem, it is clear that the e�ective
Rayleigh number converge to a �nal value Tf > 0 which isn't consistent with the idea of a �nal state
where the temperature of the �uid is zero. The surface S of the �uid on the other hand, also converge
to a �nite value (which was expected), but the given variation ∆S ∼ 1 is way higher than the expected
value (0.22/1 = 0.22).

Conclusion

This internship was the very �rst step to a new type of studies, mixing turbulence and phase
change. It was the occasion to implement the phase-�eld method on dedalus, so that we can get some
clues about the numerical context, as well as the physical one. We started to see how the heat �ux
behaves, relatively to the turbulence on a simple geometry, then we included some phase-change and
we modi�ed the geometry, in order to see, at each step, the in�uence of the new physical ingredient.
Finally, we didn't have much time to focus on the �nal system, which was the goal at the beginning.
But the di�erent problems we encountered allowed us to go deeper on some speci�c issues (numerical
and physical ones), that we couldn't anticipate. This internship is now supposed to lay the foundations
for the next studies on this speci�c subject, that will soon push forward our understanding of the
dynamics of subglacial liquid environments.
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Figure 3.3 � Evolution of the e�ective Rayleigh number and the surface S of the �uid in time, for an initial
Ra = 105 and St = 1.0... It seems that both of them converge to a �nal value.

4 Appendix

4.1 Non-dimensionalisation of the Navier-Stockes equations

It is useful to notice that the gravitational term can be rewritten as follows :

δρggg = ρ0β(T − T0)ezezez

δρggg = ρ0β
(

∆T
(
T̃ +

z

h

)
− T0

)
ezezez

δρggg = ρ0∆T
(
βT̃
)
ezezez + ρ0β∇∇∇

(
∆T

2h
z2 − T0z

)
On can then rede�ne the pressure, in order to include the second term in it :

p = P − ρ0β

(
∆T

2h
z2 − T0z

)
then p̃ =

h2

ρ0κ2
p

Likewise we can explicit the term of heat's convection :

uuu · ∇∇∇T =
κ∆T

h2
ũuu · ∇̃∇∇(T̃ + z̃) =

κ∆T

h2
(ũuu · ∇̃∇∇T̃ + w̃)

4.2 Properties of the Nusselt number

Here we consider the dimensional quantities. The heat equation is

ρ0cp (∂tT + uuu · ∇∇∇T ) = λ∇2T

With λ the thermal conductivity of the �uid, cp its thermal capacity and ρ0 its density. As a recall,
the thermal di�usive coe�cient is given by κ = λ

ρ0cp
. We can then extract the heat �ux jjj :

ρ0cp∂tT + div (ρ0cpTuuu− λ∇∇∇T︸ ︷︷ ︸
jjj

) = 0 since ∇∇∇ · uuu = 0

Then we non-dimensionalize this �ux

jjj =
λ∆T

h
((T̃ − z̃)ũuu−∇̃∇∇(T̃ − z̃)︸ ︷︷ ︸

j̃jj

)
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Now all the quantities are considered non-dimensionalized and we forgot the ,̃ so that we separate
the �ux into two terms :

q = jjj · ezezez
q = (T − z)w − ∂z(T − z)
q = (T − z)w︸ ︷︷ ︸

qconv

+(1− ∂zT︸ ︷︷ ︸
qdiff

)

But we will always compute the mean over x of those quantities, so it is useful to notice that
simpli�cation :

〈zw〉x = z〈w〉x

〈zw〉x =
z

γ

∫ γ

0

w dx

Yet the �uid is incompressible :

0 = ∂xu+ ∂zw

=⇒ 0 =

∫ z

0

dz′∂xu+ [w]z0 avec w(z = 0) = 0

=⇒ 0 =

∫ γ

0

dx

∫ z

0

∂xu+

∫ γ

0

w dx

=⇒
∫ γ

0

w dx = −
∫ z

0

dz

∫ γ

0

∂xudx

=⇒
∫ γ

0

w dx = −
∫ z

0

dz[u]γ0 avec u(x = 0) = u(x = γ)0

=⇒
∫ γ

0

w dx = 0

Thus we have
〈zw〉x = 0 =⇒ 〈qconv〉x = 〈Tw〉x

Likewise it exists a simpli�cation on the di�usive part of the �ux when we calculate the vertical
average :

〈qdiff 〉z =

∫ 1

0

(1− ∂zT )

〈qdiff 〉z = 1− [T ]z=1
z=0

〈qdiff 〉z = 1

From the last considerations, we derive the following properties for the Nusselt number :

Nu = 1 + (T − z)w − ∂zT
〈Nu〉x = 1 + 〈Tw〉x − 〈∂zT 〉x
〈Nu〉V = 1 + 〈Tw〉V

Finally we can prove a last interesting property... Let's go back to the heat equation
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∂tT +∇∇∇ · jjj = 0

With jjj = jx exexex + Nuezezez. Once the �nal permanent regime is reached, we can compute the time
average to get this :

0 = ∂tT = ∂tT

=⇒ 0 = ∂xjx + ∂zNu

Then we take the horizontal average, in which the �rst term vanishes thanks to the periodicity

〈∂xjx〉x =
1

γ

∫ γ

0

jx dx =
1

γ
[jx]γ0 = 0

Thus we have

∂z〈Nu〉x = 0 =⇒ 〈Nu〉x = cste

4.3 In�uence of the last term in the melting equations

Let's remind us the equation of phase change :

5

6
St ∂tφ = ∇2φ+

16

δ2
φ(1− φ)(2φ− 1 + T )︸ ︷︷ ︸

Q

In order to have a better understanding of the last term Q = 16/δ2 φ(1− φ)(2φ− 1 + T ), let's just
illustrate it on a simple example : a cavity with an initial shape of disk. On Figure 4.1, we see that
Q is close to zero everywhere except on the interface (thanks to φ(1 − φ)), so it will only a�ect the
boundary. But on the interface, it is positive in the �uid side and negative in the solid side, this is due
to 2φ− 1 + T which change its sign on the middle of the interface, where φ ∼ 1/2 and T ∼ 0.

In the �uid side, right before the interface φ ∼ 1 but this term make it increase even more (Q > 0),
it is supposed to balance the di�usive term ∇2φ, which tends to make the interface become wider, and
homogenise the system. The parameters 5/6St and 16/δ2 are chosen so that the non-linearities exactly
balance the di�usion, in order to keep a very small damping-zone, that follows the theoretical interface.

4.4 Equivalence between two averages in the non melting case

In the case of a static solid phase, the average over the whole volume 〈·〉V is proportional to the
average over the �uid phase 〈·〉. Let L2 be the area of the total volume, S the one of the �uid cavity
and X a �eld that vanishes in the solid because of a damping term (temperature or speed).

〈X〉V =
1

L2

∫∫
V

Xdxdz

〈X〉V =
1

L2

(∫∫
liquid

X dxdz +

∫∫
ice

X dxdz

)
〈X〉V ∼

1

L2

∫∫
liquid

X dxdz

〈X〉V ∼
S

L2
〈X〉
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Figure 4.1 � The shape of the �elds T and Q at two di�erent moments.

Indeed, the average of X in the �uid of area S is

〈X〉 =
1

S

∫∫
liquid

X dxdz

4.5 Di�usive solution on the disk geometry without melting

We're trying to �nd the analytical solution of the temperature �eld for the heat equation without
the convective term :

∂tT = ∆T

Let's suppose that the solution will be a stationary �eld, with a symmetry of rotation (the depen-
dence with θ) :

T (r, t) = f(t)g(r) =⇒ f ′

f
=

∆g

g
= −α < 0

The constant α has to be negative, so that f(t) = e−αt will decrease and the total energy falls down
instead of growing up. The solution for the equation of g is the �rst Bessel function g(r) = J0(

√
αr).

Let x0 ∼ 2.40 be the �rst root of J0, we want the temperature to vanish at r = 1, so we need to have√
α = x0, so that the �nal solution is (assuming an initial temperature T (0, 0) = 1 at the center)
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Figure 4.2 � The evolution of the temperature in the di�usive regime (Ra = 102) for two di�erent radius (R = 1
and R = 0.75). It appears that the cooling process is faster when the radius decreases.

T (r, t) = e−x0
2tJ0(x0r)

In particular the cooling rate is �xed at x0
2 ∼ 5.78, this is a veri�ed in our simulations. We can

still notice that in a general case, with a cavity of radius R, the solution is

T (r, t) = e−(x0/R)2tJ0

(x0

R
r
)

(4.1)

So the cooling rate is directly linked with the radius R, in particular the smaller the cavity is,
the faster the system cools o�. This clearly appears on the simulations (cf. Figure 4.2). This can
be an explanation, for the gap between the observed cooling rate and the theoretical one (cf. sub-
section 3.2.1).

4.6 Evolution of the Nusselt number with the e�ective Rayleigh number

in the di�usive regime on the disk geometry without melting

In order to de�ne a Nusselt number, we need to consider the outer �ux q = jjj · ererer that leaves the
disk, so we integrate it on a the circle r = 1 to get the mean

〈q〉θ(r = 1) =
1

2π

∮
q dθ

With the damping term

In case of the damping method, we have

∂t〈T 〉V = −
〈

Pr

Γ
(1− φ)T

〉
V

instead of

∂tT = −div jjj

∂t〈T 〉V = − 1

π

∮
q dθ

∂t〈T 〉V = −2〈q〉θ(r = 1)
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So we identify

Qout = 2〈q〉θ(r = 1) =

〈
Pr

Γ
(1− φ)T

〉
V

The Nusselt number compares this �ux with the one in the di�usive case :

q = −∂rT = −x0e
−x0

2tJ ′0(x0r) =⇒ 〈q〉θ(r = 1) = −x0e
−x0

2tJ ′0(x0)

Here comes a tricky part : q decrease exponentially in time, assuming that the di�usive regime in
reached from the beginning. But the system can start to show some turbulence, before its temperature
is su�ciently low to follow the di�usive regime. We don't know when this is supposed to arrive, so the
time dependent factor will be rede�ned, so that the time t is shifted to �t with the actual Raeff :

〈q〉θ(r = 1) = −x0
Raeff

Ra
J ′0(x0)

So that the Nusselt number is

Nu =
〈q〉θ(r = 1)

〈q〉θ(r = 1)
= − Qout

x0J ′0(x0)

Ra

Raeff

Now the point is the to get the evolution of Nu with Raeff in the di�usive regime :

∂t〈T 〉V = −Qout
−x0

2〈T 〉V = −Qout

Then, with the previous de�nition of Nu, we see that

Nu ∝ Qout

〈T 〉V

Combined with the last equation, we get

Nu = cste

4.7 De�nition of the Nusselt number in the case of a melting disk

In the last sub-section, we tried to de�ne a Nusselt number Nu, that still compares the �ux that
leaves the system to the one in a purely di�usive regime. It was a bit tricky because the temperature
were varying, so the di�usive �ux q had to be rescaled, by replacing the exponential term with Raeff/Ra.
We now want to generalize it to the next step : we reintroduce the possibility of phase change. There
are two new problems :

1. The leaving �ux is not calculated by the damping term anymore
〈

Pr
Γ (1− φ)T

〉
V

2. The shape of the cavity is now changing, so the di�usive solution doesn't keep its analytical
solution

The �rst point is not a big deal, since the calculations are the same as before :

∂t〈T 〉V = −St ∂t〈φ〉V
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So the equivalent of Qout is now

Qout = St ∂t〈φ〉V =
St

L2

∫∫
φ dS

The second problem is a bit di�erent and we'll need to do some approximations... Since q must be
calculated analytically, we need to suppose a certain shape for the cavity. Of course, we'll suppose that
it keeps its disk shape with a varying radius R(t). We can get this equivalent radius from the area of
the liquid phase :

S =

∫∫
φ dS ≡ πR2 =⇒ R =

√
S

π

Then with equation 4.1, we can get a di�usive solution, in which we replace the exponential de-
creasing term by Raeff/Ra, since we have a cooling process :

T =
Raeff

Ra
J0

(x0

R
r
)

Thus the leaving �ux of that equivalent disk is

〈q〉θ(r = R) = −x0

R

Raeff

Ra
J ′0(x0)

So that the �nal de�nition for Nu is

Nu = − RaSt

L2x0J ′0(x0)

R∂tS

Raeff
= − RaSt√

πL2x0J ′0(x0)

√
S∂tS

Raeff

4.8 Spreading of the �uid inside an isotherm solid at the melting tempe-

rature

The initial state is simple : we consider an in�nite uniform solid at the melting temperature Tm = 0.
There is a cavity of �uid with a shape of a disk of initial radius Ri. Let Ti(r, θ) > 0 be the initial
temperature �eld in it. So that the total temperature �eld (liquid + solid) is

Ti(r, θ) = Θ(Ri − r)Ti(r, θ)

Where Θ(x) is the Heaviside function

Θ(x) =

{
1 if x ≥ 0

0 if x < 0

Choosing this initial state �x the total accessible energy, that is to say the extractible energy from
the �uid when its temperature falls down to Tm = 0 :

E =

∫∫
(Ti − Tm) ρcp dS = ρcp

∫∫
Ti dS

When the �nal state is reached, there shouldn't be any �ux nor in the �uid, nor in the solid. So
both of them have to be at a the same temperature : Tm = 0 (cf. Figure 4.3). So all of the previously
de�ned accessible energy in used to make the solid melt :

E = Lρ∆S

Where L is the latent heat and ∆S is the variation of the �uid's area during the melting process...
Combining the two previous equations, we get in terms of non-dimensionalized quantities :
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Figure 4.3 � At the initial state, only a disk of �uid is at a temperature higher than Tm = 0. All the energy
contained in the �uid, will be absorbed by the phase change, until the whole system is at equilibrium, which implies
a single temperature Tm = 0.

St Rf
1 1.20
0.5 1.37
0.1 2.31

Table 2 � Some of the �nal radius in function for di�erent values of St at a �xed initial radius
Ri = 1.00

∆S =
1

St

∫∫
Ti dS

We can have a better understanding of this relation, considering a given initial state. In our simu-
lations, we always start from the di�usive solution

Ti(r, θ) = J0

(
x0

Ri
r

)
And we can estimate ∫ Ri

0

J0

(
x0

Ri
r

)
r dr =

(
Ri
x0

)2 ∫ x0

0

J0(u)udu ∼ 0.22Ri
2

So that

∆S ∼ 2π · 0.22Ri
2

St

To have on other order of magnitude, let's suppose that the cavity maintain its disk geometry from a
radius Ri to Rf :

∆S = π
(
Rf

2 −Ri2
)

Rf =

√
Ri

2 +
0.43Ri

2

St
= Ri

√
1 +

0.43

St

Let's assume that we start with an initial radius Ri = 1, we give some of the �nal radius in function
of St on the Table 2.
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