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Abstract

The vertical and horizontal convection in a rectangular domain of aspect ratio 4 with subglacial
lakes’ boundary conditions is studied using spectral element methods employed in Nek5000. Sim-
ulations are performed with a fixed Prandtl number Pr = 1, Ra in the range 105 − 109 and
horizontal temperature gradient (hg) values in dimensionless form between 0 and 1.0 inclusive.
Vertical convection due to geothermal heating at the bottom of the lake dominates at hg values
below 0.01 and horizontal convection due to a horizontal temperature gradient at the top bound-
ary dominates for hg values greater than 0.01. Heat flux is positive where the top temperature is
coldest that is to say where the ice slab would be thickest and melting. Where as heat flux is neg-
ative where the top temperature is warmest and that is where the ice slab would be thinnest and
freezing. The scaling laws for Reynold’s number, Re, Equilibrium temperature, Te, temperature
gradient at the top also called flux and Nusselt number, Nu as function of Ra are respectively
deduced as; Re ∼ 0.2Ra

3
11 , Te ∼ 38.5Ra− 7

50 , |F |top ∼ 0.3Ra
1
5 and Nu ∼ 0.5Ra

1
6 .

Key words: Subglacial lakes, horizontal convection, vertical convection.

Common abbreviations
hg - Horizontal temperature gradient (dimensionless variable)
hc - Horizontal convection
Ke - Kinetic energy
Ra - Rayleigh number
Nu - Nusselt number
RBC - Rayleigh Bernard convection
Re - Reynold’s number
Te - Equilibrium temperature
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1 Introduction
Antarctica is an ice-covered land mass region located at the south pole of planet earth. It is known
to be uninhabited, with very low ice temperatures. This region is covered with thick kilometres of
ice about 3-5km[1][2]. Below these thick sheets of ice, there exists some water bodies and these water
bodies are the famous subglacial lakes. Subglacial lakes are also believed to exist in Greenland[3] since
this region is also covered by ice sheets similar to Antarctica. Subglacial lakes in general are water
bodies trapped between thick kilometres of ice sheets and the continental bedrock[1]. The fact that
they are located below thick ice sheets, these water bodies are characterised by very high pressures and
very low temperatures[4]. Subglacial lakes were discovered using data records of airborne radio echo
sounding and seismic sounding of 1970s[1]. Seismic soundings used acoustic waves whereas radio-echo
soundings used electromagnetic waves. Radars on vehicles and planes where directed towards the
ice sheets and all these were used to gather information on the internal layer of the ice sheets. By
looking at the back reflected signals of radio waves or seismic soundings from the internal layering,
scientists discovered that some signals were reflected differently depending on the interface/boundary
of reflection. The data looked different and showed some kind of differences in the internal layers of
ice sheets. The existence of a bright reflection along a horizontal line at depths is what prompted
scientists to think that there were subglacial water bodies. Thus Antarctic subglacial lakes and other
subglacial lakes in Greenland were discovered in this way. Following this discovery, about about
400 subglacial lakes have been identified in Antarctica[2] and about 50 in Greenland[3]. Figure 1
demonstrates how Lake Vostok (the largest subglacial lake) and other Antarctic subglacial lakes were
detected from airborne radio-echo sounding of 1970s[1][5][6]. These subglacial lakes can be classified
as stable or unstable subglacial lakes depending on the interaction with the external environment[4].
Stable subglacial lakes are ones which are completely isolated from the earth’s climate, they stand
alone and they do not exchange their waters with the external water bodies (lakes, rivers or oceans).
On the other hand, unstable subglacial lakes are those that are hydrologically active, that is they are
connected through networks of subglacial channels and communicate via filling and discharge with the
surrounding ocean[4][7]. In this study, we will only focus on the stable subglacial lakes. They are not
connected to the external environment and oceans which makes them unique from lakes and oceans
that are commonly studied by oceanographers.
Having seen that stable subglacial lakes are completely isolated from the earth’s climate and given

the thickness of the ice sheets, it follows that unlike other water bodies, subglacial lakes have no light
implying that photosynthesis is not possible in these lakes, So we will be interested in knowing how
do micro organisms (which may exist in lake Vostok, based on accreted ice analysis [8][1]) survive in
these environments. There is no wind and no solar radiation in these lakes so we are also interested
in knowing what drives the dynamics (movement of water in these lakes) if they do really exist. Very
little information is known about the dynamics of these subglacial lakes. Knowing how microorganisms
survive in these environments opens doors to understanding life on extra terrestrial icy moons which
are said to have some kind of water packets below the icy crust[9][4]. In this study we try to apply
fluid dynamics to subglacial lakes to get some kind of insights of the parameters that control the
dynamics of these lakes. Basically we use numerical simulations to model a subglacial lake and study
its dynamics. With expeditions to subglacial lakes anticipated in the near future, we find it necessary
to try to model a subglacial lake, apply fluid dynamics results and find some variables that can give us
a hint on the dynamics of these lakes. If we find variables that can help explain how the flow behaves
in these lakes, this can be a starting point to scientists interested in exploring these subglacial lakes.
That is one of the motivations of this study. We expect these expeditions to come up with a lot of
information and results about subglacial lakes and this will open discussions in comparison to what
we would have obtained as our results.

Knowing that there exist no light (or solar radiations) and no winds in these subglacial lakes, we
are curious about what could ignite motion of water in these subglacial lakes to favour life of living
organisms. One of the first mechanisms thought to bring about dynamics in subglacial lakes is the
geothermal heat flux coming from the inside of the earth. This geothermal flux is due to the heat
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Figure 1: Discovery of Lake Vostok and other Antarctic subglacial lakes using airborne radio-echo
sounding records of 1970s. Figure obtained from [1]

produced by the earth’s interior that was stored during the formation of planet earth. Due to high
compression in the inner core during its formation, a lot of heat was generated and not all the heat
generated was radiated outwards, so there still exist some heat coming from the earth’s interior to
the outer parts of the planet. This heat energy is what contributes geothermal flux. Also, since the
bottom part of these subglacial lakes rests on the bedrock, this bedrock contains some radioactive
elements that are undergoing radio-activity thus produce some heat energy during the process. These
two phenomena contribute a heat flux at the surface of planet earth (subglacial lake bedrock). This
geothermal flux is roughly of orders of magnitude 50mWm−2[8]. This geothermal flux is large enough
to trigger flows in subglacial lakes, and these flows can be vigorous enough to suspend micro organisms
and nutrients in subglacial lakes[8]. With this geothermal flux heating at the bottom of subglacial
lakes, we expect to have Rayleigh Bernard Convection (RBC). RBC is the buoyancy-driven flow of a
fluid heated from below and cooled from above. This model of thermal convection was first studied by
Henri Bénard in 1900 and Lord Rayleigh in 1916. Since then this topic attained attention and became
a canonical fluid dynamics problem with many studies conducted related to RBC. In a subglacial lake,
if we have heating from bottom due to geothermal flux, the water masses at the bottom of the lake
become warm and less dense and therefore would want to rise. On a contrary the water masses at
the top close to the ice-water boundary are cold (because they have to be at the freezing temperature
where they are in contact with ice) and dense, therefore would prefer to sink. If the heating is small,
the temperature difference may not be sufficient enough to drive any fluid motion and in this case we
will have thermal diffusion. However, If the heating is large enough which is the case of the geothermal
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heating, there is so much potential energy due to the light water at the bottom and heavy water at
the top, that the two water masses can overcome dissipative effects and move, yielding an overturning
motion and thus mixing of water in a subglacial lake. In this case we have a Buoyancy-driven con-
vection. The amount of heating required to trigger this Buoyancy-driven convection is controlled by
the Rayleigh number(Ra) which is a function of the temperature gradient and the lake’s depth cubed.
Therefore the Rayleigh number and lake depth are some of control parameters that we need to be
aware of when performing our simulations.

The second factor that is thought of to cause motion of water in subglacial lakes is the horizontal
temperature difference along the ice-water interface of subglacial lakes[4]. The ice ceiling of subglacial
lakes is tilted with angles of tilt in the range 0-0.01 [4] [8] [10] and this causes a pressure difference
between the opposite sides of ice-water interface ,i.e., the side with a thick ice slab has a greater
pressure than the side with the shallow ice slab. Due to the dependence of melting temperature of ice
on pressure[11], a horizontal temperature difference is induced at the tilted ice ceiling of subglacial
lakes[11][4]. Therefore the side with a thick ice slab has a low melting temperature compared to the
opposite end with a slightly thinner ice slab. A horizontal temperature difference in the fluid drives a
horizontal convection leading to motion and overturning of the fluid column [12] [13]. Several studies
have been conducted through experiments and(or) simulations and have all revealed that when there
is a horizontal temperature difference between two opposite horizontal ends of a fluid, then horizontal
convection takes place in the fluid leading to turning of the fluid [14] [15] [16]. This horizontal tem-
perature difference at the tilted ice-water ceiling is large enough to produce horizontal convection in
subglacial lakes [8].

We now have an idea that motion of water in subglacial lakes is driven by two processes; one due
to geothermal heating leading to a vertical convection controlled by the Rayleigh number (Ra) and
secondly horizontal convection due to a horizontal temperature gradient induced at the top of the lake
by the tilted ceiling. A competition between these two convections is expected and our aim will be
to study the two processes and identify which one of the two dominate and at what scales. The main
objective of this study is to perform numerical simulations of both vertical convection and horizontal
convection and be able to identify the transition from one form of convection to the other. Also to
compute some physical parameters like Nusselt number, Reynolds number and boundary flux that
can help us better characterise our system. We should be able to extract the best-fit power law for
these parameters for some values of Rayleigh number. The results of this study are discussed in the
results and discussion section.

2 Formulation of the problem

2.1 Problem setup
We consider a subglacial lake laying between a thick sheet of ice about 3-5km (which is the typical
thickeness of Antarctic ice on top of antarctic subglacial lakes [2]) and the continental bedrock below
the lake. In this case we study a stable sublaglacial lake, i.e., one that is completely isolated from
earth’s climate and oceans, and thus does not communicate with the surrounding earth oceans. It is
for this reason that we assume no heat exchanges on the sides of the lake (no flux on the sides). The
only flux in the sublacial waters is coming from the bottom of the lake due to geothermal heating
from the continental bedrock. The flux due to geothermal flux at the bottom of the lake is denoted
by letter F in red in figure 2. We assume a lake of depth, H and length, L such that the aspect ratio,
A is given by A = L

H . Figure 2 shows a general schematic of a stable subglacial lake.
The interesting feature about most subglacial lakes is the tilted ice roof. Tilted ice roof implies

the pressure at the top of the lake is not uniform and this has an influence on the temperature due
the freezing temperature dependence on pressure. If H∗

i is the thickness of ice on the left hand side of
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Figure 2: Schematic representation of a subglacial lake with a tilted ice roof, resting on a bedrock. F
is the flux from the bedrock due to geothermal heating.

the lake(thicker end), then the ice overburden pressure is given by Pi = Patm +H∗
i ρig where patm is

the atmospheric pressure exerted on the surface of ice sheet, ρi is the density of ice. Since H∗
i varies

from the left to the right of the domain, the ice overburden pressure is a function of x such that Pi is
given by equation 2.1

pi(x) = patm + ρig(H∗
i − x tanφ) (2.1)

From equation 2.1, we can see that the pressure on the left is greater than the pressure on the right and
thus ice on the left melts very fast with a small value of temperature. Therefore the temperature of
the top left is always lower than the temperature on the top right and this brings about a horizontal
temperature difference at the top of the subglacial lake. φ is the ice tilt angle, these angles are
small of magnitudes in range (0 – 0.01)[8][10] but they are sufficient enough to induce a horizontal
temperature difference at the top of the lake. We consider a two dimension domain thus x and z are
the two dimensional coordinates with z the depth of the lake and x, the lake’s length.

Figure 3 shows a simplified schematic of a subglacial lake that we have used in building our simu-
lations. For simplicity we assume a flat top surface with the effect of the ice tilted roof represented by
the temperature difference (δT ) between the top right and top left of the lake. Since we are looking
at the case of a stable subglacial lake, we impose no flux on the boundaries. The big red crosses on
the sides of figure 3 implies no flux on the sides. The flux at the bottom of the lake due to geothermal
heating from the continental bedrock is represented by the red arrows at the bottom of the lake and
with letter F. We consider a lake domain of depth H such that z ranges from 0 at the bottom to H
at the top. The length of the lake used in this study is 4 such that x ranges from −2H on the left
to +2H on the right. This therefore gives us an aspect ratio, A of 4. However, subglacial lakes have
pretty large aspect ratios of magnitudes greater than 10 [8] [4]. We decided to work with this aspect
ratio of 4 because we wanted to make it computationally tractable and to limit confinement effects in
the x-direction for the case when we have vertical convection that results from geothermal flux at the
bottom of the lake. This value of aspect ratio 4 is the lower bound for large aspect ratios. Tf is the
mean lake water temperature at the top boundary which is equivalent to the melting temperature of
ice.
With the setup in figure 3, We expect a competition between vertical convection driven by the geother-
mal flux and horizontal convection driven by the horizontal temperature gradient along the tilted ice
roof due to the pressure-dependence of the freezing temperature. We will use numerical simulations
to try to understand when and which one of the two convections dominate and we should be able to
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Figure 3: A simplified model with the all the applied boundary conditions for our study. F is the flux
at the bottom of the lake arising from geothermal heating, big red crosses on the sides implies no flux
on the side. The domain is of depth 1 (0 - 1) and length 4 (−2−+ 2). x,z coordinates and temperature
difference at the top are in non-dimensional form. Non-dimensionlisation of variables is discussed in
section 2.5

identify the transition point from one type of convection to the other.

2.2 Governing equations
We model two regimes of convection, that is, vertical and horizontal convection in a subglacial lake
using the simplest forms of Navier stokes equations in Boussinesque approximation. These governing
equations of fluid flow motion in dimensional form take the form below;

∂u
∂t

+ u.∇u = − 1

ρ0
∇p+ ν∇2u− ρ

ρ0
gk̂ (2.2)

∇.u = 0 (2.3)
∂T

∂t
+ u.∇T = κ∇2T (2.4)

Where ρ0 is the reference density of the fluid in our case ρ0 = 1gcm−3 = 1000kgm−3, ρ is the
density of fluid at given time and position in the volume of the fluid, u is the fluid velocity field vector
in two dimensions ie u = u(x, z) , T - temperature of fluid. ν and κ are respectively the kinematic
viscosity and the thermal diffusivity, g is the acceleration due to gravity acting downwards opposite
to normal vector k̂. ∂

∂t denotes time derivative of velocity and temperature variables whereas ∇ is the
gradient operator

Equations 2.2 and 2.3 are well known as the incompressible Boussinesq equations. Equation 2.2
describes the conservation of momentum in the flow where as the equation 2.3 is the incompressibility
constraint on the flow, it is also referred to as the continuity equation. Since we are working with a
2-D domain, we neglect the effects due to the rotation of the earth, therefore the term due to Coriolis
force in equation 2.2 is dropped. We assume that density variations in the fluid(subglacial water)
are small in comparison with the velocity gradients such that from conservation of mass, we deduce
equation 2.3. The equation 2.4 is the heat equation that describes propagation of heat in the fluid in
terms of the spatial and temporal evolution of the temperature field. The left hand side of equation 2.4
describes the transport of heat in the fluid by advection whereas the right hand side of equation 2.4
describes the transport of heat by diffusion of temperature.

The equation of state is approximated by

ρ = ρ0(1− α(T − T0)) (2.5)
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where α is the thermal expansion coefficient T0 is the reference temperature which is the average(mean)
temperature at the top of the lake that is at z = H. T0 is given by T0 = 1

L

∫ L
0
T (z = H)dx. This

assumes that the density variations are very small and so can be approximated by a linear temperature
dependency that takes the form of equation 2.5

2.3 Boundary and initial conditions
Equations 2.2, 2.3 and 2.4 can be solved by applying appropriate boundary conditions related to our
problem. The following boundary conditions are used to define our problem.
We apply no slip boundary conditions,

u(z = 0) = u(z = H) = 0; u(x = −2H) = u(x = 2H) = 0 (2.6)

No flux on the sides such that at x = −2H, 2H
k∇T.x̂ = 0, that is,

k
∂T

∂x
= 0 (2.7)

We impose freezing temperature at the top of the lake such that the temperature T at the top (z = H)
is equal to the fusion temperature(freezing temperature of water) i.e

T (z = H) = Tf (x) (2.8)

Similarly, to be consistent with no flux boundary condition on the sides, we impose a sinusoidal
temperature function at the top (z=H) such that the temperature on the top left is minimum and
temperature on the top right is maximum. This temperature oscillates between −2 ∗ hg and +2 ∗ hg

At z = H : T =
hg.A

2
sin(

πx

A
) (2.9)

At the bottom, we impose a geothermal heat flux

−k∂T
∂z

= F (2.10)

where F is the flux which is the control parameter. Note that the gradient is negative because the
flux imposes a temperature that is warmer at the bottom and decreases upwards.

For the initial conditions we shall take that the fluid is at rest and we impose also a sinusoidal
initial temperature (in equation 2.12) which is kind of consistent with our boundary conditions of no
flux on the sides and temperature gradient between the two opposite sides on the top.

u(t = 0) = 0 (2.11)

T (t = 0) =
hgA

2
sin(

πx

A
) + (1− z) (2.12)

where hg is the dimensionless horizontal temperature difference between the top left and right of the
lake, A is the aspect ratio (L/H = 4). x and z the two dimensional coordinates.

2.4 The base static state
The base static state is when there is no velocity and assuming steady state, i.e., u = 0 and ∂

∂t = 0.
It is a good idea to think about the base static state because it gives an idea of how the system would
look like if there were no velocities. Equation 2.2 in the base static state yields

− 1
ρ0
∇p = ρ

ρ0
gẑ or 1

ρ0

∂p
∂z = ρ

ρ0
gẑ
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Giving;
∂p

∂z
= −ρgẑ (2.13)

Equation 2.13 is the hydrostatic equilibrium equation for the system. Equation 2.4 in base static state
yields;

κ∇2T = 0 (2.14)

where κ is the thermal diffusivity.

Equation 2.14 can as well be written as;

κ

(
∂2T

∂x2
+
∂2T

∂z2

)
= 0 (2.15)

Equation 2.15 is the thermal diffusion equation. We seek the diffusive solution to this equation using
our imposed boundary and initial conditions. We look for the solution of the form;

T (x, z) =
hgA

2
sin(

πx

A
)Z(z) + (1− z) (2.16)

Recall that our domain is defined such that x ranges from −2H to +2H and z is from 0 to H (as-
pect ratio = 4). The task here is to find the unknown function Z(z). We substitute equation 2.16
into equation 2.15 and apply the boundary conditions discussed above. After some mathematical
manipulations, we find the diffusion solution as shown in equation 2.17.

T (x, z) =
hgA

2 cos( πA )
sin(

πx

A
) cos(

πz

A
) + (1− z) (2.17)

Equation 2.17 is the solution to the diffusive state and can be used as an initial condition in our
simulations. We find it interesting to have an initial condition with the diffusive solution rather than
just an approximate solution however, we use the initial condition defined by equation 2.12 in our
simulations because it is more stable for very high Rayleigh numbers and so the simulations do not
blow up easily during the transient.

2.5 Non-dimensionalization of the governing equations
Nondimensionalization of equations 2.2, 2.3 and 2.4 is done by choosing characteristic scales for the
length l, H, time t , velocity u , pressure p , and temperature T and perform a change of variables.
This helps to give the resulting equations with non dimensional variables. Nondimensionalization of
equations 2.2, 2.3 and 2.4 has an advantage that physical simulation times and tolerances tend to
be easy to set when performing numerical simulations. Non-dimensionalising equations also has an
advantage of reducing on the number of input variables in the Navier Stokes equations such that we
deal with few input variables that are optimal to interpret.

2.5.1 Choosing characteristic scales

• Characteristic Length Scale
We choose the characteristic length of H which is equal the depth of the fluid such that the
non-dimensional length variable x̂ = x

H , and ẑ = z
H giving x = Hx̂, and z = Hẑ

• Characteristic time Scale
Characteristic time scale chosen here is the diffusive time scale t = τκt̂ where τκ = H2

κ .
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• Characteristic velocity Scale
Characteristic velocity is simply defined as the ratio of characteristic length to characteristic
time. We thus get a characteristic velocity of uκ = κ

H such that u = κ
H û

• Characteristic pressure Scale
We use dynamic pressure scale p(x, z) = pi(x) + ρ0g(H − z) + ∆pp̂ where pi(x) is the ice
overburden pressure given by pi(x) = patm + ρig(H∗

i − x tanφ) and ∆p = ρ0u
2
κ. Patm is the

atmospheric pressure exerted on the surface of ice, ρi is the density of ice, H∗
i is the thickness

of ice and φ is the ice slope. Since we consider a rectangular geometry for simplicity, we assume
φ = 0 such that the term x tanφ is equal to 0

• Characteristic temperature Scale
The characteristic temperature scale T here is typically defined using the mean temperature
difference in the fluid between lower(bottom) and upper(top) boundary ∆T = FH

k . We define T
as function of a dimensionless variable such that T = T̄f + ∆T T̂ where T̄f is the mean freezing
temperature at the top (interface between subglacial lake and ice) and T is the temperature in
the bulk of the lake water.

2.5.2 Coordinate transformation (change of variables)

Coordinate transformation is performed as below using the above characteristic scales;

∇ = 1
H ∇̂, ∇

2 = 1
H2 ∇̂2

∂
∂t = κ

H2
∂
∂t̂

∂u
∂t + u.∇u = κ2

H3

[
∂û
∂t̂

+ û.∇̂û
]
and

ρ = ρ0(1− α∆T T̂ ) with ∆T = T − T̄f = FH
k

Substituting the transformed coordinates and characteristic scales into equations 2.2, 2.3 and 2.4
yields;

κ2

H3

[
∂û
∂t̂

+ û.∇̂û
]

=
−1

ρ0H
∇̂
[
pi + ρ0g(H −Hẑ) +

ρ0κ
2

H2
p̂

]
+
νκ

H3
∇̂2û− (1− α∆T T̂ )gk̂ (2.18)

∇̂.û = 0 (2.19)
κ

H2

∂

∂t̂
(T̄f + ∆T T̂ ) +

κ

H2
û∇̂(T̄f + ∆T T̂ ) =

κ

H2
∇̂2(T̄f + ∆T T̂ ) (2.20)

k̂ is a unit vector pointing upwards opposite to the acceleration due to gravity g. Rearranging and
introducing non-dimensional constants yields;

∂û
∂t̂

+ û.∇̂û = −∇̂p̂+ Pr∇̂2û +RaPrT̂ k̂ (2.21)

∇̂.û = 0 (2.22)

∂T̂

∂t̂
+ û.∇̂T̂ = ∇̂2T̂ (2.23)

In equations 2.21 - 2.23 we have introduced the dimensionless constants, Pr = ν
κ and Ra =

αg∆TH3

κν which are respectively the Prandtl and Rayleigh constants. Equations 2.21, 2.22 and 2.23
are the gorvening equations in dimensionless form and the control parameter in these equations are
the Rayleigh number, Prandtl number and the aspect ratio (A = H

L ). For horizontal convection
resulting from the temperature difference at the top surface, we define a horizontal Rayleigh number
as RaL = αg∆TLL

3

κν . It should be noted that in equation 2.21, we have taken the simplest case when
there is no ice slope that is φ = 0. But in reality φ 6= 0. In subsequent studies, we recommend this
slope to be taken into account.
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2.6 Dimensionless boundary and initial conditions
We use the characteristic scales discussed in section 2.5 to define the boundary and initial conditions
in dimensionless form.

• The no slip boundary condition in dimensionless for becomes;

at z = 0, 1 and x =− 2,+ 2, û = 0 (2.24)

• No flux on the sides boundary condition in dimensionless form takes the form below;

At x = 0, L,
∂T̂

∂x̂
= 0 (2.25)

• The boundary condition due to imposed geothermal heat flux at the bottom of the lake takes
the form;

at z = 0
∂T̂

∂ẑ
=
−FH
k

.
1

∆T
(2.26)

The flux F imposed at the bottom due geothermal heating induces a temperature difference
∆T = −FH

k between the top and bottom of the fluid. This causes a temperature diffusion from
the bottom to the top surface. This redefines the boundary condition such that;

at z = 0,
∂T̂

∂ẑ
= −1 (2.27)

There fore the dimensionless flux value imposed at the bottom boundary of our domain is
F = 1.0

• Dimensionless horizontal temperature gradient at the ice - water interface, hg is defined as;

hg =
δT

∆T
(2.28)

where δT is the dimensional temperature gradient between the top left and top right of the
domain, ∆T is the temperature difference between the top and the bottom of the domain
induced by a flux, F at the bottom boundary.

3 Methodology

3.1 Numerical model: Nek5000
During this study, we perform all our simulations using a numerical code, Nek5000. Nek5000 is
an open-source code that was developed by Fischer in 2008 [17]. It is written in Fortran77 and C
languages. It uses MPI for passing messages (but can be compiled without MPI for serial applications)
[17]. The computational approach used by Nek5000 is that of the spatial discretization that is based
on the spectral element method(SEM) which has a high order weighted residual technique similar
to the finite element method. This allows Nek5000 to offer a high level of accuracy with fewer grid
points compared to Finite Element methods. Hence, the Spectral Element Method used by Nek5000
exhibits an advantage of computational efficiency for high-fidelity simulations [18]. In Nek5000, the
global domain Ω is divided into a finite number of non-overlapping elements Ωe on which the solution
is approximated by a polynomial expansion following the Galerkin approach, and global continuity
at the element boundaries is enforced [18]. The basis functions in Nek5000 are determined by the
Lagrangian interpolation based on Legendre polynomials PN of order N. Furthermore, the PN −PN−2

formulation proposed by Maday and Patera [19] is employed, where the basis functions associated

Master SOAC - 2021 9



with the pressure field are two polynomial orders below N, which is the order used for the velocity
field, effectively eliminating spurious pressure modes[18]. It should be noted that one of the greatest
advantages of the SEM is the exponential decay of the error as the order of the polynomial increases[17].
Nek5000 basically solves the unsteady incompressible Navier stokes equations with forced or natural
convection heat transfer, in both stationary or time dependent geometry [17]. The solution variables
solved in Nek5000 are the fluid velocity,u=(ux, uz), pressure,p and temperature,T. Nek5000 can also
be used for heat transfer problems. We use the results of the solved physical variables (u,p,T) to
characterise and describe our fluid system.

3.2 Number of cores test
To know which number of cores is optimal when running Nek simulations on a supercomputer, we
performed a number of cores test to identify which cores we can use efficiently for our simulations.
Several simulations were performed with same input parameters but varying number of cores. Table 1
show the results of the simulation time for each number of cores. The results are represented in

No. of cores Simulation time[s]
1 2007.2
2 993.3
4 513.9
8 287.1
16 162.9
32 127.1

Table 1: Number of cores test with the simulations run using same input parameters of Ra = 106,
Pr = 1, hg = 0.25, F = 0 and finitime = 0.5 but different number of cores.

figure 4. Figures 4a and 4b represent the results on a linear and log scale respectively.
The main conclusion from the number of cores test is that the scaling is quite good for example

(a) (b)

Figure 4: Number of cores test

going from 1 to 2 cores, the simulation time is almost divided by two which means that the simulation
runs much faster. Also from 2 to 4 t0 6 to 8 to 16 cores, the time keeps on being reduced by a half.
Moving from 16 to 32, the relative improvement is not like before, it is about 30% faster (not 50% as
before). So for our spectral resolution (at the moment) of 1600 elements par node with 80 elements
in x and 20 elements in z, shows that 16 cores is a good number to work with, so all our simulations
are performed using the number of cores as 16.
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3.3 Numerical simulations
We use the Direct Numerical Simulations(DNS) approach to perform all our numerical simulations
whereby all flow scales are resolved on the numerical grid. We use a mesh grid of 1600 elements on
each node with 80 elements in the x-axis and 20 elements in the z-axis. We have a large number of
element close to the boundaries so as to increase element resolution close to these boundaries. The
spectral resolution of the mesh is set to 8 although for very high values of Ra, the resolution can be
modified to 10 (or even 12 to allow the simulation run). Subglacial lakes do have large aspect ratios of
orders of magnitude greater than 10, we chose to work with an aspect ratio of 4 as a starting point and
we as well performed some few simulations with aspect ratio 8 to compare the results of the two values.
Simulations are performed with Rayleigh numbers of 105,106,107, 108 and 109. We use a fixed input
Prandtl number of 1 (Pr = 1) for all our simulations. Dimensionless horizontal temperature gradient
values used are small values less than 1 as reported in [8]. So, for each Rayleigh number, we perform
six simulations with different temperature gradient values of 0, 0.001, 0.01, 0.1, 0.5 and 1.0 such that
we have in total 30 sets of simulations. We use the data generated by Nek5000 for each simulation
and do a post analysis using python. After simulations are performed, data sets at each probe on the
entire grid was saved in a big data file for post analysis using python. This data set included records
of variables of temperature, velocity, kinetic energy, vorticity, enstrophy and convective flux. Global
averaging was done using a routine built in Nek5000 whereas time and space averaging was done using
Numpy, a python module during our postprocessing. The results are presented and discussed in the
results and discussion section.

4 Results and discussion
In this section we present the results from our numerical simulations of the fluid dynamics of subglacial
lakes. The results presented here are model results thus they are a prediction of what we would expect
in subglacial lakes but are rather not factual results. With expeditions to Antartic subglacial lakes
planned for the near future, results from insitu measurements could be used to validate our model
results.

4.1 Average temperature evolution in the fluid domain
From the graphs in figure 5, we observe in general a temperature drop between the time of 0 - 0.4 and
then the temperature remains constant. Initial drop in temperature is due to the initial temperature
condition imposed in our simulations. It means that initially we imposed a temperature that is slightly
higher than that of the entire fluid domain. From figure 5a, on average the temperature decreases
with an increase in the horizontal temperature difference(hg) at the top boundary. The flux imposed
at the bottom warms up the fluid but overall, the mean fluid temperature is slightly higher than the
temperature of the coldest fluid(top left of our domain). This is because downwelling convection from
the top left is very efficient, such that when the fluid from the top left descends, it decreases the overall
temperature of the liquid below. That is why we see the temperature of the entire domain decreasing
with time before it becomes steady implying that increasing hg increases the cooling effect. We refer
to the region where the temperature is decreasing with time as the transient state and the region
where the temperature is steady as the dynamical statistical steady state. Dynamic because there
is fluid movements in the domain and also we can describe some features of the system by computing
statistics of the flow implying statistical. Therefore it is a steady state in the sense of the statistics
and that is why we referred it to as dynamical steady state. For hg values between 0 - 0.1, the values
of temperature variation are very close to each other as we see the curves are not much separated.
Note that in figure 5b for Ra = 109, the graph initially is different from the others because we used
a different initial condition where by we started with zero temperature everywhere. That is why in
this case the temperature of the fluid domain initially warms up (due to geothermal flux heating) and
then after some time it stabilises at equilibrium state. We used a different initial condition because
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(a) (b)

Figure 5: Volume average temperature evolution in the fluid domain as a function of time. Time
scale used here is the diffusive time scale. (a) is the volume average temperature for simulations of
Ra = 106 and different horizontal temperature gradient (hg) values. (b) Compares the temperature
evolution for a given value of hg = 0.01 for different Rayleigh numbers. From figure 5b, we can see
that increasing Ra makes the mean temperature tend to 0, which is the average temperature of the
top boundary. This is a well known results from RBC when the bottom flux increases. The top
boundary layer thins while maintaining the same flux, such that the temperature difference between
the top boundary and the bulk decreases.

the first one was very turbulent and chaotic making the simulation crush easily. We therefore used an
initial condition that is relatively stable initially for this high value of Ra. All further analysis of time
averages is done using the steady state solution, i.e., time averages are computed starting from the
time when we have achieved steady state. We use averages or statistics because they characterize the
flow for all times for a given simulation. Since we are interested in understanding what takes place
in the entire fluid domain at steady state, we compute the steady state time average temperature and
plot it as a colormesh for x and z directions. The color scales increases with increasing hg value. The
results are shown in figure 6 and 7. The figure 6 compares the steady state temperature at different
hg values whereas figure 7 compares steady state temperature for different Rayleigh numbers.
Generally we see that moving from hg = 0 to hg = 1.0, we move from a convection that is typically
Rayleigh-Bernard convection driven by a geothermal flux at the bottom to a horizontal convection
driven by a large temperature gradient between the top right and top left of our defined fluid domain.
At low hg values (0 - 0.01) in figure 6, the Rayleigh-Bernard convection is seen to dominate and we are
able see plumes of warm fluid rising. The influence of the bottom geothermal flux heating can easily be
seen. At hg=0.001 in figure 6, we see a plume rising on the left boundary where we expect cold water
masses to be sinking, this is because the plume is inertia driven by the sinking plume in the middle that
makes it (rising plume) to go up strongly compared to the sinking fluid from the top left. The inertia
force thus overcomes the down falling cold water masses enabling the plume to rise where it would
be expected to sink. Increasing hg values to 1, we move into a domain characterised by horizontal
convection and we can see a uniform temperature domain with a temperature gradient between the top
right and top left seen to play part. In this regime horizontal convection dominates and the influence
of the bottom geothermal flux can be seen to be minimal though it still exists and still drives the
fluid upwards implying that in reality we have both vertical and horizontal convection taking place.
In figure 7, we observe that when we increase Ra, the color scale decreases with increasing Ra value.
This is because when the bottom flux increases, the top boundary layer thins while maintaining the
same flux, such that the temperature difference between the top boundary and the bulk decreases.
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Figure 6: Steady state time average temperature distribution in the fluid domain plotted as a col-
ormesh for Ra = 106 and different hg values. The color scale represents the temperature values and
the contours are isothermal lines of constant temperature.

4.2 Volume average kinetic energy
The volume average kinetic energy was computed so as to give us an insight on the motion/dynamics
and turbulence of the fluid. Kinetic energy is computed using mean square speeds (magnitude of
velocities) given by the formula K.e = 1

2 (u2 + w2), u and w being respectively the horizontal and
vertical velocities of fluid motion. The results are presented in figure 8. From the two graphs we can
observe that initially the kinetic energy of the fluid is zero consistent with our initial condition of zero
speed everywhere in the fluid. The kinetic energy then increases rapidly with time, reaches a maximum
value and then slightly drops to a lower value before remaining constant for the remaining time.The
peak in the kinetic energy for different curves is what is referred to as the transient. This transient is
important in numerical simulations because the fluid is going from non turbulent to a very turbulent
state, it is during this stage that most simulations fail so it is important to choose better parameters
to overcome this challenge especially for very high Rayleigh numbers and horizontal temperature
gradients. The region where kinetic energy appears steady is the one we call the statistical steady
state. Note that the kinetic energy at steady state is not zero implying that the fluid is still moving
but less violently compared to the transient state. Overall the kinetic energy is seen to increase with
Ra. This is because increasing Ra, increases the general turbulence of the fluid and the fluid masses
move faster, thus increasing kinetic energy. From figure 8a, it is not very clear that kinetic energy
increases with hg. In fact increasing hg from 0 to 1 implies a re-organisation of the flow that doesn’t
necessarily results in increased kinetic energy. However, as hg is further increased, kinetic energy
increases because the dominant horizontal circulation intensifies.

4.3 Mean fluid flow
The mean flow of the fluid at steady state is computed using the root mean square of the speeds,
1.e., the time average velocity fields at steady state and we plot results using a color mesh as shown
in figures 9 and 11. This is done to aid us see the evolution of our system as we change hg and(or)
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Figure 7: Steady state time average temperature distribution in the fluid domain plotted as a col-
ormesh for hg = 0.01 and different Ra values. Once again The color scale represents the temperature
values and the contours are isothermal lines of constant temperature.

Ra. The size and direction of the arrows superposed on mean flow show the magnitude and direction
of the velocity. From figure 9, we can observe that as we increase from hg=0 to hg=1.0, in general
we move from many convection cells (4 for hg=0) to a single uniformly distributed cell(hg=1). For
hg value 0.01 and below, we have mostly Rayleigh Bernard convection and the cells are easily visible
with fluid rising and falling. From hg=0.1, horizontal convection takes center stage and we can see
the fluid moving counter-clockwise horizontally in the entire domain as one cell. On the sides we have
warm water rising on the right side (where the temperature at the top is warm) and cold water masses
falling on the left side (where the temperature is coolest).
A very interesting observation made is that as we move from hg=0 to hg=0.001, the biggest cell on
left is moving in the clockwise direction yet we would expect it to mover in the anticlockwise direction.
We observe as well water masses rising at the top left where the fluid temperature is coolest and at
this point we would expect the cold water to be falling. Similarly to that we observe water falling
from the top right corner (where temperature is warmest implying the liquid there is warmer and less
dense so we would expect it to rise further or move leftwards). We tried to find an explanation to
this unique behaviour and one of the explanations was it could be because the cell is inertia driven by
the center cell and thus driving the cell to move in the counter opposite direction as observed. This
inertia driving force outweighs the gravity force of falling water and this in general drives the fluid to
move upwards at the top left and to balance the state, some water masses must fall on the right hand
side of the domain. We also thought that this unique behavior could be due to existence of reversals
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(a) (b)

Figure 8: Volume average kinetic energy distribution in the fluid domain as a function of time. (a)
Compares kinetic energy with different hg values for a fixed Ra = 106 while (b) compares kinetic
energy for hg=0.01 for different Ra values. We choose to compare different Ra values at hg=0.01 in
because hg=0.01 is quite relevant to subglacial lakes.

Figure 9: Time average mean flow plotted as a color mesh with vector fields superposed for Ra = 106,
for different hg values

at steady state and we thought maybe there exist several solutions at steady state where the fluid flow
keeps reversing. However, we checked for reversals using different approaches and the results indicated
that there was no reversals at steady state. This allowed us to conclude that the clockwise movement
of the large cell on the left at hg = 0.001 is inertia driven. To check for reversals, we re-did the time
averaging such that we separated the time average values into three sub parts from the time when we
start to have steady state (ISS) to the end other than have just one full time average as before. The
three time averages we did were from (ISS to ISS+200), (ISS+200 to ISS+1000) and (from ISS+1000
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Figure 10: Reversals check: Top row show reversal check using different time averages at steady state
and the bottom row show reversal check by looking at the time history of the temperature at given z
position (of z=0.2, z=0.5 and z=0.8).

to ISS+3000). The results are shown in figure 10 (top row). The results show no change in the pattern
of flow and thus we were unable to detect reversals using this approach. Another way to check for
reversals, we chose 3 lines along z-axis, that is, at z=0.2, z=0.5 and z=0.8 and we looked at the time
history of the temperature at these locations at steady steady. The goal of doing this was to be able
to see whether warm and cold water patches were changing positions or not. If they were to change
positions, then we would conclude that there are reversals in fluid flow else there exists no reversals.
By looking at temperature as a function of x-axis and time and plotting the results as a colormesh in
python, we obtained results in figure 10 (bottom row). Again we were unable to observe reversals and
this drove us to conclude that there existed no reversals of mean flow at steady state and the unique
flow of the large convection cell we see at hg=0.001 is basically due to inertia driving force from the
center cell.
For the same Ra and hg value, re-running the simulation with a different initial condition of zero
temperature and noise every where, we get a different solution and the direction of mean flow changes
(figure 17 in appendix). This is because the system is non linear and thus changing the initial condi-
tion changes the mean flow of the the entire system.

Figure 11 shows the mean flow with velocity vectors superposed for hg=0.01 and comparing for
different Rayleigh numbers. General observation we make from the figure is that the number of cells
decrease from four (for Ra = 105) to three (for Ra = 108). The color scale increases with increasing
Ra because increasing Ra increases the flow speed and thus the fluid flows faster. It is also important
to note that as Ra increases, it increases the intensity of both vertical convection and horizontal
convection. This is because horizontal Rayleigh number is related to Ra by RaH = Ra ∗ hg ∗ A3

with A the aspect ratio. Clockwise motion of two cells at the extreme ends is observed for Ra = 108,
there is a strong temperature gradient at the top and at the center and this leads to an anticlockwise
circulation in the center cell and the other on the sides are clockwise where the temperature gradient
is weakest. Just like before the explanation for this circulation is also centred around the fact the the
cells are inertially driven by the centre cell and also by the flux at the bottom. At Ra = 108, we can
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Figure 11: Time average mean flow plotted as a color mesh with vector fields superposed for fixed
hg = 0.01 for different Ra values.

see small re-circulation cells at the top left and bottom right. To investigate the effect of aspect ratio
on these results, we performed some simulations with Ra = 106 and hg=0, hg=0.001 and hg=0.01 to
compare the results of two aspect ratios 4 and 8 (details in appendix).

4.4 Selected computed parameters
We were able to successfully run simulations with Nek5000 and obtained some interesting results as
discussed in section results, but we are also interested in knowing how well we can characterise our fluid
domain. Therefore we thought of some important variables that could aid us better understand the
dynamics and behaviour of water in the subglacial lakes. Some of these variables included among others
the Reynold’s number because we were interested in understanding the overall turbulence intensity
in the lakes, The Nusselt number which is to aid us understand transport of heat by convection in
the entire fluid domain. Flux at the top boundary was as well computed as we expected this to
give us some information on the freezing and melting at the ice-water interface of subglacial lakes.
Finally we computed the mean equilibrium temperature of the fluid to give us some information on
the thermal properties of the domain at steady state. These variables are discussed in details in the
next subsections.
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(a) (b)

Figure 12: Dimensionless Reynold’s number(Re) as a function of horizontal temperature gradient(hg)
and Rayleigh number(Ra). For Ra = 109, one data point at hg=1.0 is missing due to lack of data
that was caused by a failed simulation.

4.4.1 Reynold’s number

Reynold’s number is a dimensionless variable that compares inertial forces to viscous forces and it is
used to characterize the extent of fluid flow properties[20]. Reynold’s number is important in fluid
dynamics because it provides information on the overall average turbulence intensity in a fluid domain,
thus it helps to categorize laminar flows from the turbulent ones. We compute the Reynold’s number
using the root mean square velocities from the kinetic energy(K.E) expression as Re =

√
2K.E where

K.E = 1
2 (u2 + w2): u and w being the horizontal and vertical velocities respectively. The computed

Re is compared with hg and Ra and results are shown in figure 12. From figure 12a, it is observed
that Re number is a weak function of hg, that is, for a given Ra value, Re does not vary much with
hg and we can observe that the lines are almost horizontal (constant). In reality increasing hg, we
expect Re to increase since hg is control parameter in horizontal Rayleigh number(RaH) implying that
overall turbulence should increase as hg increases. However, since we are looking at subglacial lakes,
where hg values are much smaller (0 - 1.0), it implies that for these very small hg values (hg ≤ 1),
changing from one hg value to another may only change the organisation of the system but does not
change the overall intensity of turbulence in the fluid thus Re not varying much. But for very high
hg values (applicable for fundamental fluid mechanics but not subglacial lakes), Re should increase as
hg increases. We were able to perform two more simulations with hg=10 and hg=100 and we were
able to observe that, truely the value of Re increased with hg. This result is shown in figure 19a
in appendix. The explanation for this increase is that when hg is large enough (beyond subglacial
lakes values), we start to inject in lots of energy into the system and the Re starts to increase with
hg. Figure 12b shows variation of Re with Ra in loglog scale and we can clearly observe that Re is
a strong function of Ra. In loglog scale we can see that the curves are almost linear which implies
that there exist a power law between Re and Ra. We were able to compute the scaling law as shown
in figure 19b in appendix for hg=0.01 curve. The power law expression is shown on the graph in
figure 19b in appendix and we obtain the scaling between Re and Ra as Re ∼ 0.2Ra

11
25 . This scaling

is close to the one obtained in Rayleigh Bernard convection (RBC) studies, for which Re scales to Ra
as Re ∼ Ra 1

2 [21]. Our scaling for Re is close to RBC studies because for hg values less or equal to 1,
the dynamics of the whole system is close to RBC than horizontal convection.
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4.4.2 Equilibrium temperature

(a) (b)

Figure 13: Equilibrium temperature in the fluid domain corrected above the minimum temperature
in the domain (−2hg) in dimensionless form as a function of horizontal temperature gradient(hg) and
Rayleigh number (Ra).

The equilibrium temperature of our fluid domain was computed by taking the time average and
volume average of the overall fluid temperature at steady state. The raw data obtained from this
computation are plotted versus hg and Ra as shown in figure 20a in appendix. The equilibrium tem-
perature initially varies very slowly with hg for different Ra values and then (from hg=0.1) decreases
as hg increases. With Ra, generally the equilibrium temperature can be observed to decrease as Ra
increases. Corrections were done to the raw data in order to guide how to establish a scaling between
the equilibrium temperature and Ra. We did the correction on the equilibrium temperature by taking
the raw values of equilibrium temperature and subtracting the minimum temperature in the entire
domain that is (Tequil + 2hg). This is because we are interested in having temperature values that are
either always positive or always negative. Also we normalize this corrected temperature by diving it
by 2hg such that we define our equilibrium temperature (corrected and normalised) as Te =

Tequil+2hg
2hg .

The results in normalized non dimensional form are compared with hg and are shown in figure 13a.
Figure 13b is comparing dimensionless equilibrium temperature with Ra. From figure 13a, We observe
that for a given Ra, increasing hg decreases the overall equilibrium temperature of the fluid. This is
because increasing hg implies we are increasing the temperature difference between the top left and
top right. The top left liquid will become more cold and will sink reducing the overall temperature of
the fluid in the domain whereas the less buoyant warm fluid on the top right will tend to stay up. We
also observe that for a given value of hg, increasing Ra decreases the equilibrium temperature. This
observations was also made in section 4.1. Same explanations to this observation applies as already
discussed in section 4.1. A power fit law is computed (to obtain a scaling law between equilibrium
temperature(Te) and Ra) as shown in figure 20b in annexes. The power fit expression between Te
and Ra for hg=0.01 curve is also shown on the graph in figure 20b. This gives us a scaling law of
Te ∼ 38.5Ra−

7
50 .

4.4.3 Temperature gradient on the top boundary

The temperature gradient(also called flux) at the top boundary is computed to give us an insight of
what takes place at the ice-water interface. We expect this computed flux to give us some information
on the freezing and melting at the top boundary. On average the flux at the top should be everywhere
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Figure 14: Time average temperature gradient on the top boundary at Ra = 106 and different values
of hg. Temperature gradient is more negative on the left and positive on the right (for hg values
from 0.1-1.0). When the temperature gradient is negative, the flux is positive implying that the flux
is going out of the system. Therefore the flux is going out of the system from the top left and flux
is coming into the system from top right. Flux going out of our domain from the top left thus does
some work on melting the ice consequently, we have melting at the top left. At the top right, flux is
coming into the system and thus we have freezing on this side.

equal to 1 because this is the flux we imposed at the bottom implying that at steady state, the rate of
heat input from the bottom is equivalent to the rate of heat escape at the top boundary (bearing in
mind that we imposed no flux on the side boundaries so no heat energy is supposed to enter or leave
our system from the sides). To better characterise the top boundary using the flux, we compute the
absolute temperature gradient at the top using the average of the absolute value using the equation 4.1

dT

dz top
= mean|dT

dz
| (4.1)

This computed value of absolute temperature gradient is then compared with hg and Ra and results
can be seen on figure 15a and figure 15b. For hg values less or equal to 0.01, the temperature gradient
at the top is close to 1 and constant with Ra implying we have steady state where the heat flux along
the top boundary is always escaping the domain (i.e. the temperature gradient is negative everywhere
while the heat flux is positive). For hg=0.01 and more, the temperature gradient increases with
increase in hg and Ra. Figure 14 shows the variation of the temperature gradient/flux on the top
boundary along the x axis. When we get a large value of absolute flux as it is the case for hg > 0.01,
temperature gradient graphs (figure 14) reveals that we have strong melting on the left hand side
where the flux is large and positive (Temperature gradient is more negative) and we have freezing on
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(a) (b)

Figure 15: Variation of absolute temperature gradient (flux) on the top boundary as a function of hg
and Ra.

the top right where the the temperature gradient is more positive(negative flux). From figure 15b,
at high hg values, we can observe that there is a linear scale between flux and Ra. We computed
this scaling using power-law fit and we found out that the temperature gradient at the top boundary
scales with Ra by the relation; dTdz |top ∼ 0.3Ra

1
5 (details on graph in figure 21 in annex). The main

conclusion we make on this result of temperature gradient at the top boundary is that there is melting
on the top left of our domain and there is freezing on the top right of our domain as seen in figure 14).
This result is consistent with that in the literature for example [22] where the authors modelled flow
and accreted ice in subglacial Lake Concordia, Antarctica and found out that melting in this subglacial
lake occurred in most regions of the lake and where ice was thickest (in our case, this is the top left
of our domain) and freezing occurred where overlying ice was thinnest (which is the top left in our
case).

4.4.4 Nusselt number

To better improve our understanding of heat transport by convection in the our fluid domain, we
computed the Nusselt number and compared it with both hg and Ra values. We also computed a
scaling law relating the Nusselt number to Rayleigh number Ra. Different approaches(expressions) are
used to compute the Nusselt number depending on the setup of the problem researchers are solving.
We cite some few setups and their computation of Nusselt number which gave as a hint on how to
come up with our own computation of Nusselt number that best suits our numerical problem. Gayen
et al, 2014 [23] studied a problem on horizontal convection in which their setup was a rectangular
domain with hot temperature imposed on the bottom left half and cold temperature imposed on the
bottom right half with all the boundaries of the domain insulating. This setup studies horizontal
convection just like ours though the difference here is that in our case we are imposing a flux at the
bottom and a temperature gradient at the top boundary. They define their Nusselt number as the
ratio of vertical heat flux to horizontal heat flux. Other studies [16], [13] and [20] define the Nusselt
number depending on the set up of their problem. This aided as to come up with an expression to
compute Nusselt number by defining it so as to fit our problem setup. We compute Nu using the flux
on the cooling side (top left of our domain) using the expression in equation 4.2

Nu =
−[dTdz < 0]mean

hg
(4.2)
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(a) (b)

Figure 16: Dimensionless Nusselt number(Nu) as a function of horizontal temperature gradient(hg)
and Rayleigh number(Ra).

where [dTdz < 0]mean is the average flux on the cooling side of the our domain and hg is the horizontal
temperature gradient at the top boundary. This Nu basically compares the vertical heat flux to the
imposed horizontal heat flux due to hg. Using this expression, we compute Nu and compare it with
hg and Ra. The results are shown in figure 16. For smaller hg, the vertical flux is not affected by the
horizontal heat flux, if we increase the horizontal heat flux(by increasing hg), then Nu goes down. It
then starts to become constant and it increases in very turbulent regimes where hg is high enough
for example 10 or 100 (fundamental fluid mechanics problems). A scaling law between Nu and Ra
is computed and we get a scaling of Nu ∼ 0.5Ra

1
6 (details on figure 22 in appendix). This scaling

compares with that of Mullarney 2004 [15] where they studied horizontal convection in a rectangular
domain in which a flux per unit area was applied on left half bottom of the domain and a uniform
cooling temperature applied on the left bottom half of their domain with all other boundaries taken
to be perfectly insulating. This study defines Nusselt number as the heat flux relative to that due
to conduction along the length of the domain given by Nu = ∆T

δT and finds a scaling of Nu ∼ Ra
1
6 .

Other studies like Yang [20], Gayen [23], with different horizontal convection studies setup find a
scaling law of Nu ∼ Ra 1

5

5 Conclusion
The dynamics of subglacial lake water is investigated using Numerical simulations with Nek5000 for
0 ≤ hg ≤ 1 and 105 ≤ Ra ≤ 109. The control parameters for these dynamics are; (i) The heating from
the bottom of the lake due to geothermal flux. This influences the vertical Rayleigh Bernard convec-
tion quantified by the vertical Rayleigh number, Ra. (ii) The horizontal temperature gradient(hg) at
the tilted ice-water ceiling that is caused by the difference in the ice over burden pressures between the
top left and top right. The horizontal temperature gradient induces the horizontal flow (also known
as horizontal convection) of the fluid in the domain. The fluid motion oscillates between vertical
convection and horizontal convection depending on the horizontal temperature gradient. When the
horizontal temperature gradient is small (less than 0.01), then vertical convection due geothermal
flux heating dominates and we have basically Rayleigh Bernard convection taking place in the sub-
glacial lake. When horizontal temperature gradient is large enough (greater that 0.01), then we have
horizontal convection dominating and we have strong horizontal flow of the lake water. It has been
shown from the results that increasing Ra and hg decreases the equilibrium temperature of the entire
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fluid domain and the bottom temperature as well decreases. Further more it has also been shown
that the overall intensity of fluid flow increases with increasing Ra though it is a weak function of
hg for lower values of hg. For very high values of hg, the intensity of fluid flow increases with hg.
Numerical simulations results reveal a strong negative temperature gradient (strong positive flux) on
the side where the ice is thickest and a strong positive temperature gradient (strong negative flux)
on the side where the ice block is thinnest. Thus we have strong melting on the side with positive
flux and freezing on the side with negative flux that is to say we have melting at the top left of our
defined domain and freezing at the top right of the domain. The results allowed us to compute the
scaling between Re, equilibrium temperature, top boundary flux and Nu with the Rayleigh number,
Ra. These variables were found to scale with Ra as; Re ∼ 0.2Ra

3
11 , Te ∼ 38.5Ra−

7
50 , dTdz |top ∼ 0.3Ra

1
5

and ∼ 0.5Ra
1
6 respectively.
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Appendix

A Appendices

A.1 Reversals check

Figure 17: Time average mean flow plotted as a color mesh with vector fields superposed for Ra =
106, hg = 0.001 with an initial condition of zero temperature everywhere.

A.2 Aspect ratio 8
We use an aspect ratio of 8 such that our domain runs from −4H −+ 4H along x-axis and 0 − H
along z-axis. These results can be seen in figure 18. The first, second and third columns correspond
respectively to hg=0, hg=0.001 and hg=0.01 where as the first, second and third rows are the results for
the mean temperature, mean flow and convective flux respectively. Convective heat flux is computed
by getting the product of vertical velocity,w and mean temperature,T, i.e., ConvectiveF lux = wT .
Increasing the aspect ratio to 8 increases the width of the domain and creates more room for more
cells and we count cell from 8 (hg=0) to 7 (hg=1) just like it was the case with aspect ratio 4 where
we moved from 4 cells to 3.

A.3 Reynold’s number
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Figure 18: Simulations with Aspect ratio 8. The first, second and third colunns are respectively
hg=0,gh=0.001 and hg=0.01 where as the top, middle and bottom rows are results of mean temper-
ature, mean flow and convective heat flux respectively.
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(a)
(b)

Figure 19: (a) Variation of Reynold’s number with hg. Higher values of hg=10 and 100 are added to
take into account fundamental fluid dynamics. For hg below 1.0, the Reynolds number does not vary
much with increase in hg. However, for very high hg values greater than 1 (for example 10 and 100),
Reynold’s number should increase with increasing hg. The graph in figure 19a clearly verifies this.
(b) is a graph of Power-law fit for Reynold’s number versus Ra, hg=0.01. The dots represent the data
points while the solid orange line shows the power-law fit.

(a)
(b)

Figure 20: (a) Variation of equilibrium temperature (raw values-not corrected) with hg value. (b) A
graph of Power-law fit for corrected normalised equilibrium temperature versus Ra, hg=0.01. The
dots represent the data points while the solid orange line shows the power-law fit.
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Figure 21: Power-law fit for top boundary flux versus Ra, hg=0.01.The dots represent the data points
while the solid orange line shows the power-law fit.

Figure 22: Power-law fit for Nu versus Ra, hg=0.01. The dots represent the data points while the
solid orange line shows the power-law fit.
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Figure 23: Time average bottom temperature at steady state for Ra = 106. When defining our
problem, we imposed a flux at the bottom meaning the bottom temperature at the start is completely
unknown. With a flux imposed at the bottom, this flux warms up the fluid; so the temperature of the
fluid at the bottom boundary is expected to evolve with time. These plots thus demonstrate this time
evolution of bottom temperature. We observe that the bottom temperature is always positive but
with multiple maxima/minima for low hg values due to multiple RBC cells (Temperature values are
minima where we expect a sinking plume and maxima where the plume is rising). Increasing hg values,
bottom temperature is almost monotonously increasing left to right due to horizontal convection and
downwelling for cold flows on the left for high hg.
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